scholarly journals Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case

Author(s):  
R Lestriez ◽  
E Amet ◽  
B Tartinville ◽  
C Hirsch
Energies ◽  
2016 ◽  
Vol 9 (2) ◽  
pp. 74 ◽  
Author(s):  
Chirag Trivedi ◽  
Michel Cervantes ◽  
Ole Dahlhaug

2010 ◽  
Vol 27 (3) ◽  
pp. 365-386 ◽  
Author(s):  
Xiao Yexiang ◽  
Wang Zhengwei ◽  
Yan Zongguo ◽  
Li Mingan ◽  
Xiao Ming ◽  
...  

Author(s):  
Zoe Burton ◽  
Grant Ingram ◽  
Simon Hogg

The exhaust hood of a steam turbine is a vital area of turbomachinery research its performance strongly influences the power output of the last stage blades. It is well known that accurate CFD simulations are only achieved when the last stage blades are coupled to the exhaust hood to capture the strong interaction. This however presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching of methods to reduce the computational effort without compromising solution accuracy. This work uses a novel approach, by coupling the last stage blades and exhaust hood by the Non-Linear Harmonic Method, a technique widely used to reduce calculation size in high pressure turbine blades and axial compressors. This has been benchmarked against the widely adopted Mixing Plane method. The test case used is the Generic Geometry, a representative exhaust hood and last stage blade geometry that is free from confidentiality and IP restrictions and for which first calculations were presented at last year’s conference [1]. The results show that the non-uniform exhaust hood inlet flow can be captured using the non-liner harmonic method, an effect not previously achievable with single passage coupled calculations such as the mixing plane approach. This offers a significant computational saving, estimated to be a quarter of the computation time compared with alternative methods of capturing the asymmetry with full annulus frozen rotor calculations.


Author(s):  
Martin von Hoyningen-Huene ◽  
Alexander R. Jung

This paper studies different acceleration techniques for unsteady flow calculations. The results are compared with a non-accelerated, fully-explicit solution in terms of time-averaged pressure distributions, the unsteady pressure and entropy in the frequency domain and the skin friction factor. The numerical method solves the unsteady three-dimensional Navier-Stokes equations via an explicit time-stepping procedure. The flow in the first stage of a modern industrial gas turbine is chosen as a test case. After a description of the numerical method used for the simulation, the test case is introduced. The comparison of the different numerical algorithms for explicit schemes is intended to ease the decision about which acceleration technique to use for calculations as far as accuracy and computational time are concerned. The convergence acceleration methods under consideration are, respectively, explicit time-stepping with implicit residual averaging, explicit time-consistent multigrid and implicit dual time stepping. The investigation and comparison of the different acceleration techniques are applicable to all explicit unsteady flow solvers. As another point of interest, the influence of the stage blade count ratio on the flow field is investigated. For this purpose, a simulation with a stage pitch ratio of unity is compared with a calculation using the real ratio of 78:80, which requires a more sophisticated method for periodic boundary condition treatment. This paper should help to decide whether it is vital from the turbine designer’s point of view to model the real pitch ratio in unsteady flow simulations in turbine stages.


2015 ◽  
Vol 111 ◽  
pp. 197-205 ◽  
Author(s):  
A.V. Minakov ◽  
D.V. Platonov ◽  
A.A. Dekterev ◽  
A.V. Sentyabov ◽  
A.V. Zakharov

2014 ◽  
Vol 721 ◽  
pp. 182-186 ◽  
Author(s):  
Da Hai Luo ◽  
Chao Yan ◽  
Wei Lin Zheng ◽  
Wu Yuan

A new Partially Averaged Navier-Stokes (PANS) model is proposed with the aim of simulating unsteady separated flows at reasonable computational expense. The unresolved-to-total ratio of kinetic energy (fk) related to PANS method is taken as a spatially varying and dynamically updating parameter in the computations. Turbulent flow past a backward-facing step is chosen as a test case in an effort to evaluate the model performance. PANS computations are compared to the experimental data and the traditional Detached Eddy Simulations (DES), showing their excellent capability of resolving turbulent fluctuations. Boundary layer shielding technique is also introduced into the PANS approach and effectively improves the computational results.


Sign in / Sign up

Export Citation Format

Share Document