scholarly journals Modulation of levamisole and nicotine toxicity in soil nematodes Caenorhabditis elegans and Caenorhabditis briggsae by moderate heat stress and ambient pH

Author(s):  
A V Egorova ◽  
R R Kolsanova ◽  
E B Belova ◽  
D M Khakimova ◽  
R R Shagidullin ◽  
...  
2016 ◽  
Vol 62 ◽  
pp. 37-49 ◽  
Author(s):  
Tatiana B. Kalinnikova ◽  
Rufina R. Kolsanova ◽  
Evgenia B. Belova ◽  
Rifgat R. Shagidullin ◽  
Marat Kh. Gainutdinov

2021 ◽  
Vol 1 (1) ◽  
pp. 43-46
Author(s):  
A. V. Egorova ◽  
Т. В. Kalinnikova ◽  
R. R. Shagidullin

Heavy metals are one of the most common pollutants in environment. The aim of this work was to test the hypothesis assuming that one of mechanisms of toxic action of copper, cadmium and lead on invertebrates’ organisms is adaptive activation of cholinergic synaptic transmission. In experiments with two free-living soil nematodes, namely Caenorhabditis elegans and Caenorhabditis briggsae, it has been shown that Cu2+, Cd2+ and Pb2+ ions at concentrations of 60 and 120 µM enhanced the negative effects of the nicotinic acetylcholine receptors agonist levamisole on the nematodes’ organisms. Under combined action of levamisole and heavy metals on organisms of C. elegans and C. briggsae the mean time of nematodes paralysis (complete loss of the ability to swim) was reduced. The results of this work show that nematodes C. elegans and C. briggsae can be used as model organisms to study mechanisms of toxic action of heavy metals.


2011 ◽  
Vol 42 (5) ◽  
pp. 435-437 ◽  
Author(s):  
T. B. Kalinnikova ◽  
A. Kh. Timoshenko ◽  
O. Yu. Tarasov ◽  
T. M. Gainutdinov ◽  
M. Kh. Gainutdinov

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1161
Author(s):  
Yuqing Huang ◽  
Mark G. Sterken ◽  
Koen van Zwet ◽  
Lisa van Sluijs ◽  
Gorben P. Pijlman ◽  
...  

The nematode Caenorhabditis elegans has been a versatile model for understanding the molecular responses to abiotic stress and pathogens. In particular, the response to heat stress and virus infection has been studied in detail. The Orsay virus (OrV) is a natural virus of C. elegans and infection leads to intracellular infection and proteostatic stress, which activates the intracellular pathogen response (IPR). IPR related gene expression is regulated by the genes pals-22 and pals-25, which also control thermotolerance and immunity against other natural pathogens. So far, we have a limited understanding of the molecular responses upon the combined exposure to heat stress and virus infection. We test the hypothesis that the response of C. elegans to OrV infection and heat stress are co-regulated and may affect each other. We conducted a combined heat-stress-virus infection assay and found that after applying heat stress, the susceptibility of C. elegans to OrV was decreased. This difference was found across different wild types of C. elegans. Transcriptome analysis revealed a list of potential candidate genes associated with heat stress and OrV infection. Subsequent mutant screens suggest that pals-22 provides a link between viral response and heat stress, leading to enhanced OrV tolerance of C. elegans after heat stress.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S865-S865
Author(s):  
Niaya James ◽  
Jessica L Scheirer ◽  
Karl Rodriguez

Abstract Karl A. Rodriguez’s laboratory at the University of Texas Health Science Center, San Antonio, Texas, is interested in the role of small heat shock proteins in the proteostasis network and aging using the model organism, Caenorhabditis elegans. Molecular chaperones facilitate protein folding and improve the degradation activity of the proteasome and autolysosome hence decreasing disease-associated aggregates. Previous work in rodents have shown an increase in expression levels of the small heat shock protein 25 (HSP-25) correlates with maximum lifespan potential. To further explore the role of HSP-25 in C. elegans, two HSP-25 knock-out strains were exposed to a one-hour heat stress, heat shock, and two non-heat stress conditions.


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2091728
Author(s):  
Yoshihiko Nishioka ◽  
Seiya Nishikawa ◽  
Toshiyuki Shibata

Sideritis scardica is a Lamiaceae plant that is endemic to the alpine zone of the Balkan Peninsula. The tea of S. scardica has been handed down as a “tea of longevity” in the Rhodope region of Bulgaria for an unknown amount of time. In this study, we prepared a hot water extract of S. scardica (SHWE) and examined its effects on both life span and stress response in living tissue using Caenorhabditis elegans and its transgenic mutants. The life span of wild-type N2 worms was prolonged by approximately 15% at the SHWE concentration of 5 µg/mL and approximately 22% at the SHWE concentration of 50 µg/mL, as compared with the control group. The effect of SHWE on the expression of heat shock protein 16.2 (HSP-16.2) under heat stress was investigated using TJ375 worms, a transgenic mutant of C. elegans. In the TJ375 worms pretreated with SHWE, the fluorescence intensity of green fluorescent protein fluorescence, which indicates the expression of HSP-16.2, was significantly increased. In the assay using TJ356 worms, the worms pretreated with SHWE did not show the translocation of DAF-16, a forkhead transcription factor class O homolog, from the cytoplasm to nucleus under heat stress. Additionally, under heat stress, the pretreatment of SHWE improved the survival rate of GR1307 worms, a knockout mutant of daf-16. These results indicate that SHWE enhances HSP-16.2 expression through a stress-response pathway (eg, HSF-1 pathway) other than the DAF-16 pathway, resulting in a prolonged life span of C. elegans under heat stress.


Sign in / Sign up

Export Citation Format

Share Document