scholarly journals Experimental study on compressive strength and durability of steel slag cement non-burned and non-steamed brick

2021 ◽  
Vol 634 (1) ◽  
pp. 012119
Author(s):  
Biying Cui ◽  
Bingcong Gao ◽  
Qiang Li ◽  
Hongzhen Kang
Author(s):  
Sravya Nalla ◽  
Janardhana Maganti ◽  
Dinakar Pasla

Self-compacting concrete (SCC) is a revolutionary development in concrete construction. The addition of mineral admixtures like metakaolin, which is a highly reactive pozzolana to the SCC mixes, gives it superior strength and durability. The present work is an effort to study the behavior of M50 grade SCC by partial replacement of Portland Slag Cement (PSC) with metakaolin. Its strength and durability aspects are comparable with a controlled concrete (without replacement of cement). In the present work, a new mix design methodology based on the efficiency of metakaolin is adopted. The optimum percentage replacement of cement with metakaolin is obtained based on compressive strength test results. The influence of metakaolin on the workability, compressive strength, splitting tensile strength and flexural strength of SCC and its behavior when subjected to elevated temperature was investigated through evaluation against controlled concrete and non-destructive testing. From the test results, it was observed that incorporation of metakaolin at an optimum dosage satisfied all the fresh properties of SCC and improved both the strength and durability performance of SCC compared to controlled concrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Abdulhalim Karaşin ◽  
Murat Doğruyol

The intention of this study is to discuss the variation of concrete exposed to high sulfate environment of a specific region with respect to strength and durability. Secondly, it is aimed to discuss the possibility of reducing the cement amount in construction of concrete structures. For this purpose, laboratory tests were conducted to investigate compressive strength and sulfate resisting capacity of concrete by using 20% fly ash as mineral additives, waste materials, instead of cement. As a case study the soil samples, received from Siirt Province areas which contain high sulfate rate, have been compared with respect to sulfate standard parameters of TS 12457-4. In such regions contact of underground water seep into hardened concrete substructures poses a risk of concrete deterioration. In order to determine the variation of strength and durability for concrete exposed to such aggressive environment, the samples were rested in a solution of Na2SO4(150 g/lt) in accordance with ASTM C 1012 for the tests. As a result of this experimental study, it is noted that the use of 20% fly ash, replacement material instead of cement, has no significant effect on compressive strength of concrete over time.


2011 ◽  
Vol 704-705 ◽  
pp. 1051-1054
Author(s):  
Jian Ping Zhu ◽  
Qi Lei Guo ◽  
Xiang Gao ◽  
Dong Xu Li

The present research study investigates the compressive and durable properties of concretes with steel slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and twenty-four concretes containing steel slag were tested. The steel slag fraction used was “5–20 mm”, and the surface area of steel slag powder was 450m2/kg. Compressive strength at 7 and 28 days, and chloride penetration properties were measured. It is concluded that steel slag can be used in the production of concrete. In addition, the steel slag concretes present satisfactory physical properties. When proper amount of steel slag powder and steel slag fraction were used the concrete properties can be better than the blank one. Keywords: Steel slag, cement, coarse aggregate, concrete, durability


Author(s):  
S. N. Manjunath ◽  
D. Mohammed Rafi ◽  
A. B. S. Dadapeer

Concrete is the most widely used composite construction material. Fine aggregate plays a very important role for imparting better properties to concrete in its fresh and hardened state. Generally, river sand was used as fine aggregate for construction. Due to the continuous mining of sand from riverbed led to the depletion of river sand and it became a scarce material. Also, sand mining from river bed caused a lot of environmental issues. As a substitute to river sand, Robo sand has been used. In this present experimental study a comparative study has been carried out to check the usability of Robo sand in place of natural sand. This study involves determination of some major properties of concrete like compressive strength, split tensile strength, flexural tensile strength and durability in acidic medium made of both the sands. Based on proposed studies, quality of Robo sand is equivalent to natural sand in many respects, such as cleanliness, grading, strength, angularity, specific gravity. Conclusion have been arrived that Robo sand produced from VSI (vertical shaft impact or) is a suitable and viable substitute to river sand and could be effectively used in making concrete which provides adequate strength and durability for the concrete. In the design of concrete structures, concrete is taken into account by taking its compressive strength value. The compressive strength of the concrete made of Robo sand is observed to be very nearer to the strength of the concrete made of natural sand in the present investigation, there by 100% replacement is reasonable.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bong Suk Cho ◽  
Young Cheol Choi

The refining process using an aluminum deoxidizer for fabricating stainless steel generated steel slag (STS-refining slag (SRS)) that contains a large amount of Al2O3 and is a compound of mainly 12CaO·7Al2O3 and 3CaO·Al2O3. When SRS was mixed with slag cement, rapid exothermic reaction occurred in the initial phase of hydration. During the hydration of slag cement and SRS, a large quantity of xCaO-yAl2O3-zH2O hydrate was observed. Until 10% weight replacement ratio of SRS to slag cement, the compressive strength was in the same level as in the existing slag cement. However, 20% replacement was accompanied by much strength degradation and high drying shrinkage. When a mixture of SRS and gypsum was added to slag cement, ettringite (3CaO·Al2O3·3CaSO4·32H2O) was actively created in the initial hydration phase. The compressive strength of the OPC-BFS-SRS-gypsum binder at 91 days was 91% of that of slag cement (B50) and was similar to that of OPC (O100). Besides, drying shrinkage was almost half that of slag cement, which indicates excellent performance for shrinkage. In case SRS is adequately used, which is an industrial by-product of the steel-making process, high shrinkage, a basic problem of slag cement, will be mitigated.


Sign in / Sign up

Export Citation Format

Share Document