scholarly journals Spirulina: growth in continuous and batch bioreactors and response to stress conditions

2021 ◽  
Vol 705 (1) ◽  
pp. 012001
Author(s):  
Anton Mikryukov ◽  
Vitaly Sablin ◽  
Diana Martseva ◽  
Nadezda Tarasova ◽  
Vasili Travkin ◽  
...  
2016 ◽  
Vol 79 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
ACHYUT ADHIKARI ◽  
ANDY BARY ◽  
CRAIG COGGER ◽  
CALEB JAMES ◽  
GÜLHAN ÜNLÜ ◽  
...  

ABSTRACT Pathogens exposed to agricultural production environments are subject to multiple stresses that may alter their survival under subsequent stress conditions. The objective of this study was to examine heat and starvation stress response of Escherichia coli O157:H7 strains isolated from agricultural matrices. Seven E. coli O157:H7 isolates from different agricultural matrices—soil, compost, irrigation water, and sheep manure—were selected, and two ATCC strains were used as controls. The E. coli O157:H7 isolates were exposed to heat stress (56°C in 0.1% peptone water for up to 1 h) and starvation (in phosphate-buffered saline at 37°C for 15 days), and their survival was examined. GInaFiT freeware tool was used to perform regression analyses of the surviving populations. The Weibull model was identified as the most appropriate model for response of the isolates to heat stress, whereas the biphasic survival curves during starvation were fitted using the double Weibull model, indicating the adaptation to starvation or a resistant subpopulation. The inactivation time during heating to achieve the first decimal reduction time (δ) calculated with the Weibull parameters was the highest (45 min) for a compost isolate (Comp60A) and the lowest (28 min) for ATCC strain 43895. Two of the nine isolates (ATCC 43895 and a manure isolate) had β < 1, indicating that surviving populations adapted to heat stress, and six strains demonstrated downward concavity (β > 1), indicating decreasing heat resistance over time. The ATCC strains displayed the longest δ2 (>1,250 h) in response to starvation stress, compared with from 328 to 812 h for the environmental strains. The considerable variation in inactivation kinetics of E. coli O157:H7 highlights the importance of evaluating response to stress conditions among individual strains of a specific pathogen. Environmental isolates did not exhibit more robust response to stress conditions in this study compared with ATCC strains.


2020 ◽  
Vol 48 (22) ◽  
pp. 12833-12844
Author(s):  
Adeline Galvanin ◽  
Lea-Marie Vogt ◽  
Antonia Grober ◽  
Isabel Freund ◽  
Lilia Ayadi ◽  
...  

Abstract RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2′-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Polina A. Vishnyakova ◽  
Maria A. Volodina ◽  
Nadezhda V. Tarasova ◽  
Maria V. Marey ◽  
Daria V. Tsvirkun ◽  
...  

2020 ◽  
Vol 401 (6-7) ◽  
pp. 737-747 ◽  
Author(s):  
Ruairidh Edwards ◽  
Sarah Gerlich ◽  
Kostas Tokatlidis

AbstractThe mitochondrial intermembrane space (IMS) houses a large spectrum of proteins with distinct and critical functions. Protein import into this mitochondrial sub-compartment is underpinned by an intriguing variety of pathways, many of which are still poorly understood. The constricted volume of the IMS and the topological segregation by the inner membrane cristae into a bulk area surrounded by the boundary inner membrane and the lumen within the cristae is an important factor that adds to the complexity of the protein import, folding and assembly processes. We discuss the main import pathways into the IMS, but also how IMS proteins are degraded or even retro-translocated to the cytosol in an integrated network of interactions that is necessary to maintain a healthy balance of IMS proteins under physiological and cellular stress conditions. We conclude this review by highlighting new and exciting perspectives in this area with a view to develop a better understanding of yet unknown, likely unconventional import pathways, how presequence-less proteins can be targeted and the basis for dual localisation in the IMS and the cytosol. Such knowledge is critical to understanding the dynamic changes of the IMS proteome in response to stress, and particularly important for maintaining optimal mitochondrial fitness.


2004 ◽  
Vol 82 (6) ◽  
pp. 422-425 ◽  
Author(s):  
Marisa Zallocchi ◽  
Laura Matkovic ◽  
María C Damasco

This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11β-hydroxysteroid dehydrogenase 1 and 11β-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11β-hydroxysteroid dehydrogenase 1 activity, but not 11β-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11β-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.Key words: acidosis, adrenal, HSD, stress.


Sign in / Sign up

Export Citation Format

Share Document