scholarly journals Wheel Hub Material Selection through Finite Element Analysis based on Reverse Engineering

2021 ◽  
Vol 714 (3) ◽  
pp. 032084
Author(s):  
Junzhen Liu ◽  
Junyu Liu ◽  
Tingjie Liu ◽  
Runhua Luo ◽  
Xianghui Zhan
2021 ◽  
Author(s):  
R. M. Farizuan ◽  
A. R. Irfan ◽  
H. Radhwan ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
Khoo Kin Fai ◽  
...  

Author(s):  
Y N Kharakh ◽  
A E Krupnin ◽  
D A Gribov ◽  
F D Sorokin ◽  
L G Kirakosyan ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 2125-2129
Author(s):  
Zhi Ying Song ◽  
Jian Yang Zhao ◽  
Rui Qing Jia

This paper focuses on materials selection and finite element analysis for flameproof enclosure of mine exploration robot. The internal environment of abandoned mine is unknown, thus the robot must be designed explosion proof. This research deals with a safe solution to environment exploration for abandoned mines by using mine exploration robot. Modeling by using 3D software and finite element analysis verifies whether enclosure strength satisfies requirements. It will provide a reference for the development of mine exploration robot.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 214-220
Author(s):  
Mohd Nasri Ishak ◽  
Abd Rahim Abu Talib ◽  
Mohammad Yazdi Harmin

Current design of safety syringes requires two handed operation and additional processes which is not similar to the normal syringes. Due to this concern, a new design of safety syringe is introduced in order to produce a safety syringe which allows a single-handed operation and similar to the operation of a normal syringes. This paper presents the material selection process and design analysis of a newly devel-oped multi-purpose disposable safety syringe. Based on the design analysis, the force which needed to dismantle the nozzle is found to be 20 N and this value is practical for the end users. The finite element analysis had also shown that the design concept is safe and has safety feature for the user to use. In addition, copolymer is proven as the best material selection for safety syringe production.


Author(s):  
Wei Zhang ◽  
Anil Erol ◽  
Saad Ahmed ◽  
Sarah Masters ◽  
Paris von Lockette ◽  
...  

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity of modeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP’s relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.


2011 ◽  
Vol 199-200 ◽  
pp. 579-582 ◽  
Author(s):  
Ju Yan Liu ◽  
Zhi Xia He ◽  
Qian Wang ◽  
Yun Long Huang

The high pressure common rail injection System is one of the most advanced technologies for the diesel engine to reduce fuel consumption exhaust emissions. While the design of the high pressure common rail injector is the key for the whole system. Considering that the working pressure of fuel in the injector, a more accurate injector body model was established with the modeling software Pro/Engineer in this study. Finite element analysis technology in Ansys software was applied to calculate the strength of injector body of the high pressure common rail system under different injection pressures. And then the rationality of structure parameters and material selection of the injector body can be analyzed and verified. The research conclusions can provide the theoretical basis for the optimization design of the injector.


Sign in / Sign up

Export Citation Format

Share Document