scholarly journals Layout and Optimization of the External Prestressing Tendons of Hybrid Beam Rigid Frame Bridges

2021 ◽  
Vol 719 (3) ◽  
pp. 032061
Author(s):  
Guixiu Xu ◽  
Minggen Zeng ◽  
Qingtian Su

Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


2021 ◽  
pp. 127571
Author(s):  
Yong Zeng ◽  
Yutong Zeng ◽  
Dong Jiang ◽  
Shanhong Liu ◽  
Hongmei Tan ◽  
...  

2009 ◽  
Vol 126 (2) ◽  
pp. 685-693 ◽  
Author(s):  
J.-P. Groby ◽  
A. Wirgin ◽  
L. De Ryck ◽  
W. Lauriks ◽  
R. P. Gilbert ◽  
...  

Author(s):  
DB Heyner ◽  
G Piazza ◽  
E Beeh ◽  
G Seidel ◽  
HE Friedrich ◽  
...  

A promising approach for the development of sustainable and resource-saving alternatives to conventional material solutions in vehicle structures is the use of renewable raw materials. One group of materials that has particular potential for this application is wood. The specific material properties of wood in the longitudinal fiber direction are comparable to typical construction materials such as steel or aluminum. Due to its comparatively low density, there is a very high lightweight construction potential especially for bending load cases. Structural components of the vehicle body are exposed to very high mechanical loads in the case of crash impact. Depending on the component under consideration, energy has to be absorbed and the structural integrity of the body has to be ensured in order to protect the occupants. The use of natural materials such as wood poses particular challenges for such applications. The material characteristics of wood are dispersed, and depend on environmental factors such as humidity. The aim of the following considerations was to develop a material system to ensure the functional reliability of the component. The test boundary conditions for validation also play a key role in this context. The potential of wood–steel hybrid design based on laminated veneer lumber and steel was investigated for use in a component subjected to crash loads such as the door impact beam. The chosen solution involves a separation of functions. A laminated veneer lumber-based beam was hybridized with a steel strip on the tension side. The steel strip was designed to compensate the comparatively low elongation at fracture of the wood and to ensure the integrity of the beam. The wooden component was designed for high energy absorption due to delamination and controlled failure during the impact, while maintaining the surface moment of inertia, i.e. the bending stiffness of the entire component. This approach was chosen to ensure the functional safety of the component, avoid sudden component failure and utilize the high potential of both materials. The tests carried out provided initial functional proof of the chosen solution. The hybridization achieved significantly higher deformations without sudden failure of the beam. In addition, bending capabilities were increased significantly compared to a beam without hybridization. In comparison with a state-of-the-art steel beam, the hybrid beam was not able to achieve the maximum deformation and the target weight of the hybrid beam. Further optimization of the hybrid beam is therefore necessary.


2021 ◽  
Vol 11 (6) ◽  
pp. 2553
Author(s):  
Sang-Hyun Kim ◽  
Jong-Sup Park ◽  
Woo-Tai Jung ◽  
Jae-Yoon Kang

Various methods for strengthening existing structures have been developed owing to the increase in human and property damages caused by the deterioration of structures. Among the various reinforcing methods, the external prestressing method increases the usability and safety of a structure by directly applying tension to the weak tensile area that suffers the greatest deflection during the structure usage. The external prestressing method is advantageous in reducing cracks caused by the introduced tension and restoration of the deflection. Since the strengthening method is applied to deterioration bridges, the strengthening effect is affected by the condition of the existing structure. However, studies on the strengthening effect according to the degree of deterioration are insufficient. Therefore, the behavior according to the strengthening status was analyzed, and the strengthening effect was identified in this study by simulating the deteriorated bridge, reducing the compressive strength and reinforcement quantity, and conducting a four-point loading test. As a result of the experiment, a reinforcement effect of 215% crack load, 161% yield load, and the difference in behavior according to the reinforcement parameters were confirmed.


Sign in / Sign up

Export Citation Format

Share Document