scholarly journals Numerical Analysis on the Effect of Vital Design Parameters on the Seismic Performance of Shear Walls with Horizontal Ring Connection

2021 ◽  
Vol 719 (4) ◽  
pp. 042016
Author(s):  
Jian Zhou ◽  
Tao Zhang ◽  
Liming Li ◽  
Zhipeng Guo ◽  
Qiancheng Shi
2022 ◽  
Vol 14 (2) ◽  
pp. 712
Author(s):  
Emad Abraik ◽  
Maged A. Youssef ◽  
Salah F. El-Fitiany

Reinforced concrete (RC) walls are extensively used in high-rise buildings to resist lateral loads, while ensuring an adequate level of ductility. Durability problems, including corrosion of conventional steel reinforcements, necessitate exploring alternative types of reinforcement. The use of glass fiber reinforced polymer (FRP) bars is a potential solution. However, these bars cannot be used in seismic applications because of their brittleness and inability to dissipate seismic energy. Superelastic shape memory alloy (SMA) is a corrosion-free material with high ductility and unique self-centering ability. Its high cost is a major barrier to use in construction projects. The clear advantage of utilizing both SMA and FRP to achieve durable self-centering structures has motivated the development of a composite SMA-FRP bar. This paper investigates the hybrid use of FRP bars and either SMA bars or composite SMA-FRP in concrete shear walls. An extensive parametric study was conducted to study the effect of different design parameters on the lateral performance of hybrid RC walls. The seismic behavior of the hybrid walls was then examined. The hybrid walls not only solved the durability problem but also significantly improved the seismic performance.


2021 ◽  
Vol 239 ◽  
pp. 112058
Author(s):  
Sebastián Calderón ◽  
Cristián Sandoval ◽  
Gerardo Araya-Letelier ◽  
Ernesto Inzunza ◽  
Oriol Arnau

Author(s):  
N. Premkumar ◽  
K. Subhashini ◽  
G. Valarmathi ◽  
Jagadeesh Kumar ◽  
S Meganathan

2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2005 ◽  
Vol 8 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Y. Fukumoto ◽  
T. Takaku ◽  
T. Aoki ◽  
K. A. S. Susantha

This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.


Sign in / Sign up

Export Citation Format

Share Document