scholarly journals Optimal allocation of power resources considering consumption of clean energy

2021 ◽  
Vol 804 (3) ◽  
pp. 032014
Author(s):  
Dunnan Liu ◽  
Hua Li ◽  
Tingting Zhang ◽  
Lingxiang Wang
Author(s):  
Jing-wen Chen ◽  
Yan Xiao ◽  
Hong-she Dang ◽  
Rong Zhang

Background: China's power resources are unevenly distributed in geography, and the supply-demand imbalance becomes worse due to regional economic disparities. It is essential to optimize the allocation of power resources through cross-provincial and cross-regional power trading. Methods: This paper uses load forecasting, transaction subject data declaration, and route optimization models to achieve optimal allocation of electricity and power resources cross-provincial and cross-regional and maximize social benefits. Gray theory is used to predict the medium and longterm loads, while multi-agent technology is used to report the power trading price. Results: Cross-provincial and cross-regional power trading become a network flow problem, through which we can find the optimized complete trading paths. Conclusion: Numerical case study results has verified the efficiency of the proposed method in optimizing power allocation across provinces and regions.


2021 ◽  
Vol 13 (4) ◽  
pp. 2169
Author(s):  
Xing Chen ◽  
Suhua Lou ◽  
Yanjie Liang ◽  
Yaowu Wu ◽  
Xianglu He

The regional power system is an essential mechanism to solve the unbalanced distribution of resources and achieve more efficient resource allocation. In this paper, an optimal scheduling model of the regional power system is developed, to maximize social welfare and minimize clean energy electricity curtailment. This model can realize the optimal allocation of power generation resources and the maximum accommodation of multiple types of clean energy, by minimizing the sum of the electricity purchase cost and the dynamic penalty cost of clean energy. Meanwhile, it considers the modeling of the key AC/DC hybrid tie-line in the regional power grid. To this end, the modeling methods of power transmitted by AC/DC tie-line, the net loss of the tie-line, the stair-like operation of the DC tie-line power, the operation constraints of the DC tie-line are proposed. Then a simulation example study is conducted to verify the effectiveness of the model, which proves that the regional power system can stimulate the resource optimization potential better than the provincial power system.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tuo Liu ◽  
Bo Xu ◽  
Xin Zheng ◽  
Yirui Deng

We analyse the direction of the energy revolution from the dimensions of cleanness, electrification, intelligence, and ubiquity. Based on this, we highlight the importance of electricity in the Energy Internet and analyse the challenges faced by the development of the power grid. Then, we propose an electricity-centered energy comprehensive optimization model and set up baseline scenario and carbon neutral scenario, to achieve a systematic simulation of the path of Energy Internet to boost energy transition. The results show that the Energy Internet accelerates the process of clean energy supply, effectively promotes the development of the energy transition, and contributes to the realization of the carbon neutral goal. There are still many problems in the development of the Energy Internet. In order to accelerate the transformation of the energy system and the power industry, it is necessary to establish a sound energy policy system, encourage clean energy consumption, and use the construction of the Energy Internet to achieve optimal allocation of resources.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shiping Geng ◽  
Caixia Tan ◽  
Dongxiao Niu ◽  
Xiaopeng Guo

To push forward the development of electric vehicles while improving the economy and environment of virtual power plants (VPPs), research on the optimization of VPP capacity considering electric vehicles is carried out. In this paper, based on this, this paper first analyzes the framework of the VPP with electric vehicles and models each unit of the VPP. Secondly, the typical scenarios of wind power, photovoltaic, electric vehicle charging and discharging, and load are formed by the Monte Carlo method to reduce the output deviation of each unit. Then, taking the maximization of the net income and clean energy consumption of the VPP as the objective function, the capacity optimal allocation model of the VPP considering multiobjective is constructed, and the conditional value-at-risk (CVaR) is introduced to represent the investment uncertainty faced by the VPP. Finally, a VPP in a certain area of Shanxi Province is used to analyze a calculation example and solve it with CPLEX. The results of the calculation example show that, on the one hand, reasonable selection of the optimal scale of EV connected to the VPP is able to improve the economy and environment of the VPP. On the other hand, the introduction of CVaR is available for the improvement of the scientific nature of VPP capacity allocation decisions.


2013 ◽  
Vol 860-863 ◽  
pp. 2441-2446
Author(s):  
Xiao Ping Zhang ◽  
Xu Dong Song ◽  
Nan Hua Yu ◽  
Jong Cong Chen ◽  
Lei Lei Zhang

As the distribution energies are becoming the future trend to solve the tense fossil fuel supplying and environmental issues, further research on the management of DGs connected to system is necessary. Management of reactive power resources is vital for stable and secure operation of power systems in power losses and voltage quality. Base on this, an optimal power allocation strategy of different types of DG units which result in the minimum line losses and relatively good voltage profile is proposed in this paper.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4615 ◽  
Author(s):  
Devabalaji Kaliaperumal Rukmani ◽  
Yuvaraj Thangaraj ◽  
Umashankar Subramaniam ◽  
Sitharthan Ramachandran ◽  
Rajvikram Madurai Elavarasan ◽  
...  

This article proposes a new approach based on a bio-inspired Cuckoo Search Algorithm (CSA) that can significantly envisage with several issues for optimal allocation of distribution static compensator (DSTATCOM) in Radial Distribution System (RDS). In the proposed method, optimal locations of the DSTATCOM are calculated by using the Loss Sensitivity Factor (LSF). The optimal size of the DSTATCOM is simulated by using the newly developed CSA. In the proposed method, load flow calculations are performed by using a fast and efficient backward/forward sweep algorithm. Here, the mathematically formed objective function of the proposed method is to reduce the total system power losses. Standard 33-bus and 69-bus systems have been used to show the effectiveness of the proposed CSA-based optimization method in the RDS with different load models. The simulated results confirm that the optimal allocation of DSTATCOM plays a significant role in power loss minimization and enhanced voltage profile. The placement of DSTATCOM in RDS also plan an important role for minimizing uncertainties in the distribution level. The proposed method encourages one to use renewable-based resources, which results in affordable and clean energy.


Sign in / Sign up

Export Citation Format

Share Document