scholarly journals The Evaluation of The use of Palm Shell Ash Waste to Polymer Modified Asphalt Mixture

2021 ◽  
Vol 830 (1) ◽  
pp. 012010
Author(s):  
Rindu Twidi Bethary ◽  
Dwi Esti Intari ◽  
Woelandari Fathonah ◽  
Solehan Andika
Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1404 ◽  
Author(s):  
Kezhen Yan ◽  
Lingyun You ◽  
Daocheng Wang

The objectives of this study are to evaluate the high-temperature performance of polymer-modified asphalt and asphalt mixtures, and to investigate if the standard technical indexes are useful in the performance evaluation of the polymer-modified asphalt. There are four typically used polymer-modified asphalt types employed in the study. The standard high-temperature rheological test, such as the temperature sweep test, was used to express the high-temperature performance of the polymer-modified asphalt. Also, considering the non-Newtonian fluid properties of the polymer-modified asphalt, the multiple stress creep recovery (MSCR) and zero-shear viscosity (ZSV) tests were employed for the characterizations. Besides, based on the mixture design of SMA-13, the high temperature of the polymer-modified asphalt mixture was evaluated via Marshall stability and rutting tests. The test results concluded that the ranking of the four kinds of polymer-modified asphalt was different in various laboratory tests. The TB-APAO has the best technical indexes in MSCR and ZSV tests, while the WTR-APAO performed best in the temperature sweep test. In addition, the correlation between the polymer-modified asphalt and the asphalt mixture was very poor. Thus, the present standard technical indexes for the profoundly polymer-modified asphalt mixtures are no longer suitable.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2282
Author(s):  
Hamad Abdullah Alsolieman ◽  
Ali Mohammed Babalghaith ◽  
Zubair Ahmed Memon ◽  
Abdulrahman Saleh Al-Suhaibani ◽  
Abdalrhman Milad

Polymer modification is extensively used in the Kingdom of Saudi Arabia (KSA) because the available asphalt cement does not satisfy the high-temperature requirements. It was widely used in KSA for more than two decades, and there is little information regarding the differences in the performance of different polymers approved for binder modification. Pavement engineers require performance comparisons among various polymers to select the best polymer for modification rather than make their selection based on satisfying binder specifications. Furthermore, the mechanical properties can help select polymer type, producing mixes of better resistance to specific pavement distresses. The study objective was to compare the mechanical properties of the various polymer-modified asphalt (PMA) mixtures that are widely used in the Riyadh region. Control mix and five other mixes with different polymers (Lucolast 7010, Anglomak 2144, Pavflex140, SBS KTR 401, and EE-2) were prepared. PMA mixtures were evaluated through different mechanical tests, including dynamic modulus, flow number, Hamburg wheel tracking, and indirect tensile strength. The results show an improvement in mechanical properties for all PMA mixtures relative to the control mixture. Based on the overall comparison, the asphalt mixture with polymer Anglomk2144 was ranked the best performing mixture, followed by Paveflex140 and EE-2.


Author(s):  
Jhony Habbouche ◽  
Ilker Boz ◽  
Brian K. Diefenderfer ◽  
Benjamin F. Bowers

The objective of this paper was to assess the viability of using high polymer (HP) modified asphalt concrete (AC) mixtures in Virginia as a reflective crack mitigation technique or when deemed appropriate as a tool for increased crack resistance on higher volume facilities. This was achieved by compiling and evaluating routine distress survey data against pre-paving distress survey data for relevant in-service HP pavements constructed between 2015 and 2018 and comparing them with several control in-service conventional polymer-modified asphalt (PMA) pavements. This is the first effort in North America to provide a detailed field performance of HP AC mixtures. In general, none of the evaluated mixtures (HP or PMA) was able to prevent reflective cracking completely. The HP sections showed the most promising performance 5 years after construction regardless of traffic level and the pre-existing pavement conditions. The pavement management system data for the reviewed sections indicated a potential controlling effect of the joint condition of the underlying jointed concrete pavement layer regardless of the asphalt mixture type employed (PMA or HP). Moreover, performance evaluations using the network-level pavement management data were conducted to estimate the life expectancy of HP AC overlays. Two different approaches and three levels of analysis were undertaken. Overall, PMA and HP AC overlays had an average predicted service life of 6.2 and 8.3 years, respectively, indicating a 34% extension of performance life of the AC overlays with high polymer modification.


Sign in / Sign up

Export Citation Format

Share Document