scholarly journals Progress of On-line Biological Monitoring Technology in Different Water Environment

2021 ◽  
Vol 831 (1) ◽  
pp. 012064
Author(s):  
Long Chen ◽  
Yan Liu ◽  
Jing Lv ◽  
Xiangfeng Kong ◽  
Jingru Wang
2021 ◽  
Vol 1043 (3) ◽  
pp. 032052
Author(s):  
Linlin Cao ◽  
Kai Liu ◽  
Zhongwei Zhang ◽  
Wendong Sun ◽  
Weiliang Chen

2013 ◽  
Vol 588 ◽  
pp. 175-183
Author(s):  
Andrzej Grządziela

Minehunters are subjected to specific sea loads due to waving and dynamical impacts associated with underwater explosion. Sea waving can be sufficiently exactly modeled by means of statistical methods. Much more problems arise from modeling impacts due to underwater explosion. Knowledge of a character of impulse loading which affects ship shaft line can make it possible to identify potential failures by means of on-line vibration measuring systems. The problem of influence of sea mine explosion on hull structure is complex and belongs to more difficult issues of ship dynamics. Underwater explosion is meant as a violent upset of balance of a given system due to detonation of explosives in water environment. A paper presents a proposal of identification of a degree of hazard the ships hull forced from underwater explosion. A theoretical analysis was made of influence of changes of hull structure in vicinity of hull. The main problem of naval vessels is a lack of dynamical requirements of stiffness of the hull. Modeled signals and hull structure were recognized within sensitive symptoms of three sub models: model of hull structure, model of impact and model of propulsion system. All sub models allow testing forces and their responses in vibration spectrum using SIMULINK software and FEM models.


2014 ◽  
Vol 519-520 ◽  
pp. 1169-1172
Author(s):  
De Wen Wang ◽  
Lin Xiao He

With the development of on-line monitoring technology of electric power equipment, and the accumulation of both on-line monitoring data and off-line testing data, the data available to fault diagnosis of power transformer is bound to be massive. How to utilize those massive data reasonably is the issue that eagerly needs us to study. Since the on-line monitoring technology is not totally mature, which resulting in incomplete, noisy, wrong characters for monitoring data, so processing the initial data by using rough set is necessary. Furthermore, when the issue scale becomes larger, the computing amount of association rule mining grows dramatically, and its easy to cause data expansion. So it needs to use attribute reduction algorithm of rough set theory. Taking the above two points into account, this paper proposes a fault diagnosis model for power transformer using association rule mining-based on rough set.


2013 ◽  
Vol 36 (2) ◽  
pp. 317-331 ◽  
Author(s):  
Ying-jun Li ◽  
Chang-sheng Ai ◽  
Xiu-hua Men ◽  
Cheng-liang Zhang ◽  
Qi Zhang

2021 ◽  
Vol 252 ◽  
pp. 01046
Author(s):  
Shan Fan ◽  
Yi Huang ◽  
Haixia Zeng

At present, many kinds of sensors are used for on-line monitoring of cutting process, tool identification and timely replacement. However, most of the original monitoring signals extracted from the cutting process are time series signals, which contain too much process noise. As the signal noise is relatively low, it is difficult to establish a direct relationship with the tool wear. Therefore, how to obtain the effective information from the online monitoring signal and extract the characteristics that can directly reflect the tool wear from the complex original signal, so as to establish an effective and reliable tool wear monitoring system, is the key and difficult problem in the research of the online monitoring technology of tool wear. Firstly, an experimental platform based on the force sensor for on-line monitoring of tool wear was built, and the signal obtained by the force sensor was used to monitor the tool wear, and the feature information was extracted and fused. The innovation of the project lies in the use of Gaussian process regression (GPR) method to predict the tool wear, the use of feature dimensional rise technology, to reduce the impact of noise, on the premise of ensuring the prediction accuracy, improve the confidence interval of GPR prediction results, improve the stability and reliability of the monitoring process.


Sign in / Sign up

Export Citation Format

Share Document