scholarly journals Modern hydrological and morphological state of the Agrakhan Bay and its adverse changes

2021 ◽  
Vol 834 (1) ◽  
pp. 012003
Author(s):  
D V Magritsky ◽  
M A Samokhin ◽  
D I Sokolov ◽  
O N Erina ◽  
A V Goncharov ◽  
...  
Keyword(s):  
Author(s):  
Djuraev Jamolbek Abdukakharovich ◽  
◽  
Makhsitaliev Mukhammadbobur Ibrokhimovich, Ibrokhimovich ◽  

The work carried out made it possible to substantiate the need to apply a method for studying the frequency of beating of cilia of the mucous membrane of the nasal cavity and paranasal sinuses in patients with chronic rhinosinusitis when choosing treatment tactics in an ENT hospital. Analysis of the study of data on the functional and morphological state of the mucous membrane of the nasal cavity and maxillary sinus allows us to judge the severity of the pathological process before surgery, which is the fundamental factor in the algorithm for the treatment of chronic rhinosinusitis.


2004 ◽  
Vol 220 ◽  
pp. 365-366
Author(s):  
J. R. Kuhn ◽  
D. Kocevski

A simple and natural explanation for the dynamics and morphology of the Local Group Dwarf Spheroidal galaxies, Draco (Dra) and Ursa Minor (UMi), is that they are weakly unbound stellar systems with no significant dark matter component. A gentle, but persistent, Milky Way (MW) tide has left them in their current kinematic and morphological state (the “parametric tidal excitation”). A new test of a dark matter dominated dS potential follows from a careful observation of the “clumpiness” of the dS stellar surface density.


Author(s):  
Jan Nahlik ◽  
Jaromír Kukal ◽  
Jan Kohout ◽  
Jan Mareš ◽  
Pavel Hrnčiřík ◽  
...  

The paper deals with the application of specific methods of digital image analysis for the monitoring of morphological changes in cultures of filamentous microorganisms. First, a sequence of digital image preprocessing and processing steps is proposed for the treatment of microscopic images of a filamentous culture. The preprocessing step include band pass filtering by the Difference of Gaussians filter featuring a novel approach to the task of parameters tuning, as well as the optimization of image porosity and image objects separation quality. In the processing step, the resulting enhanced images are subject to morphological state characterization using a set of several standard and modified morphological parameters. Descriptions of morphological states of different complexity are then discussed varying from the standard set of mean values of parameters to the set of parameters in their full histogram of value frequencies (distribution) form. For such complex descriptions also new fashions of graphical representation of results without loss of information are compared. The potential of the proposed full description of morphological behavior of the culture is demonstrated using a set of microscopic images taken during an industrial antibiotics production cultivation using a microorganism belonging into the Streptomyces genus. Finally, the cluster analysis is proposed for further automatic quantitative classification and interpretation of complex description of metabolic states.


2015 ◽  
Vol 5 (6) ◽  
pp. 20150049 ◽  
Author(s):  
Jennifer F. Hoyal Cuthill

Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales.


2021 ◽  
Author(s):  
Zambaga Otgonbayar ◽  
Won Chun Oh

Abstract For reduction of CO2 into hydrocarbon fuels, a quaternary AgFeNi2S4 semiconductor combined in Graphene-TiO2 nanocomposite material was synthesized via the Pechini method. The catalytic activity of the photocatalyst for photocatalytic and electrochemical CO2 evolution into hydrocarbon fuels was tested. The methanol yield under UV light was 8.679, 6.349, and 4.136 %, and the methanol yields under visible light were 6.291, 4.738, and 2.339 %, respectively. The stability and reusability of the photocatalyst remained high after a 4-cycle recycling test without a decrease in yield of the final photocatalytic CO2 reduction product. The enhanced photoreduction of CO2 through the as-prepared ternary photocatalyst can be ascribed to the catalyst's conformation and low recombination rate. In electrochemical CO2 reduction, the Faraday efficiency is the main parameter that defines the performance of the working electrode and the evolution of methanol. The Faraday efficiency of AFNSGT ternary nanocomposite was 44.25 %; this is an increase in the value of the Faraday efficiency, which proves that the design of the new nanocomposite successfully increases the activity of the working electrode and has a positive effect on the electrochemical reduction of CO2. The photocatalytic and electrochemical CO2 reduction data show that the preparation method, morphological state, and charge carrier properties of the photocatalyst are important for the catalytic activity and efficiency of the methanol evolution pathway.


Sign in / Sign up

Export Citation Format

Share Document