scholarly journals Comparison of Numerical Models of Flow and Heat Transfer Through Porous Medium in a Vertical Channel

2021 ◽  
Vol 850 (1) ◽  
pp. 012023
Author(s):  
G Trilok ◽  
N Gnanasekaran

Abstract Porous medium modelling technique has opened up ways for number of numerical studies to investigate the performance of many devices that involve heat exchanging process. Such modelling technique not only avoids huge cost and time as compared to experimental analysis but also makes computationally less time-consuming as in case of numerical simulation by exact geometry modelling of porous materials. In this regard the present paper analyses two different thermal models namely local thermal equilibrium model and local thermal non equilibrium model along with two different flow models namely Darcy flow model and Darcy extended Forchheimer model. Suitability of the mentioned models in predicting heat transfer through metal foam and wire mesh porous medium is examined subjected to variations in structural aspects of the porous medium that could be primarily represented by variation in porosity and pore density. For this purpose, a vertical channel subjected to constant heat flux capable of housing porous medium reported in literature is numerically modelled and air flow is numerically simulated through the channel. A variety of structural configuration (combination of different porosity and pore density) of the mentioned porous media are considered and among the mentioned flow and thermal models, best suited models for predicting flow and heat transfer through such medium are identified with appropriate justifications. It is revealed from the present study that, Darcy-Forchheimer and LTNE models are best suited to predict flow and heat transfer through porous media than the basic Darcy and LTE models.

2000 ◽  
Author(s):  
W. H. Hsieh ◽  
W. T. Wu

Abstract An experimental investigation is conducted to determine the flow and heat-transfer parameters of porous media with the consideration of density-variation effect of the working fluid. The permeability (K), inertial coefficient (F), and local convective heat transfer coefficient (hloc) are determined for two types of metal screens at Reynolds numbers ranging from 20 to 400. A single-blow transient technique combined with a compressible non-local-thermal-equilibrium model determines the hloc. The compressible non-local-thermal-equilibrium model is also adopted in a Levenberg-Marquardt optimization technique for deducing the K and F from measured steady-state pressure drops at different flow rates. Results show that the permeability increases with the increase of the porosity. A set of empirical correlations is obtained for calculating the Nusselt number. Results also show that, under the test condition of this study, consideration of the density-variation effect would improve the accuracy in deducing the K, F, and hloc.


2001 ◽  
Author(s):  
V. S. Travkin ◽  
K. Hu ◽  
I. Catton

Abstract The history of stochastic capillary porous media transport problem treatments almost corresponds to the history of porous media transport developments. Volume Averaging Theory (VAT), shown to be an effective and rigorous approach for study of transport (laminar and turbulent) phenomena, is used to model flow and heat transfer in capillary porous media. VAT based modeling of pore level transport in stochastic capillaries results in two sets of scale governing equations. This work shows how the two scale equations could be solved and how the results could be presented using statistical analysis. We demonstrate that stochastic orientation and diameter of the pores are incorporated in the upper scale simulation procedures. We are treating this problem with conditions of Bi for each pore is in a range when Bi ≳ 0.1 which allows even greater distinction in assessing an each additional differential, integral, or integral-differential term in the VAT equations.


Author(s):  
Khalil Khanafer ◽  
K. Vafai

Purpose This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media. Design/methodology/approach Transport phenomena in porous media are of continuing interest by many researchers in the literature because of its significant applications in engineering and biomedical sectors. Such applications include thermal management of high heat flux electronic devices, heat exchangers, thermal insulation in buildings, oil recovery, transport in biological tissues and tissue engineering. FSI is becoming an important tool in the design process to fully understand the interaction between fluids and structures. Findings This study is structured in three sections: the first part summarizes some important studies on the applications of porous medium and FSI in various engineering and biomedical applications. The second part focuses on the applications of FSI in porous media as related to hyperthermia. The third part of this review is allocated to the applications of FSI of convection flow and heat transfer in engineering systems filled with porous medium. Research limitations/implications To the best knowledge of the present authors, FSI analysis of turbulent flow in porous medium never been studied, and therefore, more attention should be given to this area in any future studies. Moreover, more studies should also be conducted on mixed convective flow and heat transfer in systems using porous medium and FSI. Practical implications The wall of the blood vessel is considered as a flexible multilayer porous medium, and therefore, rigid wall analysis is not accurate, and therefore, FSI should be implemented for accurate predictions of flow and hemodynamic stresses. Social implications The use of porous media theory in biomedical applications received a great attention by many investigators in the literature (Khanafer and Vafai, 2006a; Al-Amiri et al., 2014; Lasiello et al., 2016a, Lasiello et al., 2016b; Lasiello et al., 2015; Chung and Vafai, 2013; Mahjoob and Vafai, 2009; Yang and Vafai, 2008; Yang and Vafai, 2006; Ai and Vafai, 2006). A comprehensive review was conducted by Khanafer and Vafai (2006b) summarizing various studies associated with magnetic field imaging and drug delivery. The authors illustrated that the tortuosity and porosity had a profound effect on the diffusion process within the brain. AlAmiri et al. (2014) conducted a numerical study to investigate the effect of turbulent pulsatile flow and heating technique on the thermal distribution within the arterial wall. The results of that investigation illustrated that local heat flux variation along the bottom layer of the tumor was greater for the low-velocity condition. Yang and Vafai (2006) presented a comprehensive four-layer model to study low-density lipoprotein transport in the arterial wall coupled with a lumen (Figure 1). All the four layers (endothelium, intima, internal elastic lamina and media) were modeled as a homogenous porous medium. Originality/value Future studies on the applications of FSI in porous media are recommended in this review.


2020 ◽  
Vol 98 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Ali Asghar Sedighi ◽  
Zeynab Deldoost ◽  
Bahram Mahjoob Karambasti

The flow and heat transfer of Al2O3–water nanofluid in a channel partially filled with porous media is investigated numerically. The turbulence effect in the porous media is taken under consideration in this article. A simple case is simulated first to evaluate the accuracy of the results in comparison with the available data. The turbulent kinetic energy profile is investigated at a flow cross section. The results show that the maximum turbulent kinetic energy occurs in the clear fluid region in the vicinity of the porous media region. The turbulent kinetic energy is a decreasing function of the porosity of the porous medium. The effect of porosity on the variation of turbulent kinetic energy decreases with the increase in the porosity of the porous medium. The turbulent kinetic energy in clear fluid and porous media regions decreases with the increase in nanofluid concentration from 0.01 to 0.03, and it increases with the increase in nanofluid concentration from 0.03 to 0.05. The temperature of the nanofluid increases with the increase in the nanofluid concentration and decrease in the porosity of porous media. It is shown that for this case, with the increase in nanofluid concentration and porosity of porous media, the skin friction coefficient increases and the Nusselt number decreases.


2006 ◽  
Vol 9 (1) ◽  
pp. 1-14 ◽  
Author(s):  
H. Dhahri ◽  
A. Boughamoura ◽  
Sassi Ben Nasrallah

Sign in / Sign up

Export Citation Format

Share Document