scholarly journals Local scour characteristics around offshore wind-turbine foundations under nonlinear waves and currents

2021 ◽  
Vol 861 (3) ◽  
pp. 032084
Author(s):  
Ruigeng Hu ◽  
Yao Lu ◽  
Zhen Zhao ◽  
Hao Leng ◽  
Hongjun Liu
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1709 ◽  
Author(s):  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Minghao Wu ◽  
Peter Troch ◽  
Alexander Schendel ◽  
...  

This study aims to improve the design of scour protection around offshore wind turbine monopiles, as well as future-proofing them against the impacts of climate change. A series of large-scale experiments have been performed in the context of the European HYDRALAB-PLUS PROTEUS (Protection of offshore wind turbine monopiles against scouring) project in the Fast Flow Facility in HR Wallingford. These experiments make use of state of the art optical and acoustic measurement techniques to assess the damage of scour protections under the combined action of waves and currents. These novel PROTEUS tests focus on the study of the grading of the scour protection material as a stabilizing parameter, which has never been done under the combined action of waves and currents at a large scale. Scale effects are reduced and, thus, design risks are minimized. Moreover, the generated data will support the development of future scour protection designs and the validation of numerical models used by researchers worldwide. The testing program objectives are: (i) to compare the performance of single-layer wide-graded material used against scouring with current design practices; (ii) to verify the stability of the scour protection designs under extreme flow conditions; (iii) to provide a benchmark dataset for scour protection stability at large scale; and (iv) to investigate the scale effects on scour protection stability.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1960
Author(s):  
Hsing-Yu Wang ◽  
Hui-Ming Fang ◽  
Yun-Chih Chiang

In this study, a hydrodynamic model was used that includes the effects of wave–current interactions to simulate the wave and current patterns before and after offshore wind turbine installation in western Taiwan. By simulating the waves and currents after the offshore wind turbine was established, the waves and currents caused by the wind turbine were seen to have a limited range of influence, which is probably within an area about four to five times the size of the diameter (12–15 m) of the foundation structure. Overall, the analysis of the simulation results of the wave and current patterns after the offshore wind turbines were established shows that the underwater foundation only affected the local area near the pile structure. The wind farm (code E) of the research case can be equipped with about 720 cage cultures; if this is extended to other wind farms in the western sea area, it should be possible to produce economic-scale farming operations such as offshore wind power and fisheries. However, this study did not consider the future operation of the entire offshore wind farm. If the operation and maintenance of offshore wind farms are not affected, and if the consent of the developer is obtained, it should be possible to use this method to provide economically large-scale farming areas as a mutually beneficial method for offshore wind power generation and fisheries.


Author(s):  
Zi-hao Tang ◽  
Bruce Melville ◽  
Naresh Singhal ◽  
Asaad Shamseldin ◽  
Jin-hai Zheng ◽  
...  

Author(s):  
Syaoyue CHEN ◽  
Yota ENOMOTO ◽  
Masashi WATANABE ◽  
Katsuya HAMACHI ◽  
Takumi ISHIGAKI ◽  
...  

Author(s):  
Toshiki Chujo ◽  
Yoshimasa Minami ◽  
Tadashi Nimura ◽  
Shigesuke Ishida

The experimental proof of the floating wind turbine has been started off Goto Islands in Japan. Furthermore, the project of floating wind farm is afoot off Fukushima Prof. in north eastern part of Japan. It is essential for realization of the floating wind farm to comprehend its safety, electric generating property and motion in waves and wind. The scale model experiments are effective to catch the characteristic of floating wind turbines. Authors have mainly carried out scale model experiments with wind turbine models on SPAR buoy type floaters. The wind turbine models have blade-pitch control mechanism and authors focused attention on the effect of blade-pitch control on both the motion of floater and fluctuation of rotor speed. In this paper, the results of scale model experiments are discussed from the aspect of motion of floater and the effect of blade-pitch control.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3333
Author(s):  
Maria del Cisne Feijóo ◽  
Yovana Zambrano ◽  
Yolanda Vidal ◽  
Christian Tutivén

Structural health monitoring for offshore wind turbine foundations is paramount to the further development of offshore fixed wind farms. At present time there are a limited number of foundation designs, the jacket type being the preferred one in large water depths. In this work, a jacket-type foundation damage diagnosis strategy is stated. Normally, most or all the available data are of regular operation, thus methods that focus on the data leading to failures end up using only a small subset of the available data. Furthermore, when there is no historical precedent of a type of fault, those methods cannot be used. In addition, offshore wind turbines work under a wide variety of environmental conditions and regions of operation involving unknown input excitation given by the wind and waves. Taking into account the aforementioned difficulties, the stated strategy in this work is based on an autoencoder neural network model and its contribution is two-fold: (i) the proposed strategy is based only on healthy data, and (ii) it works under different operating and environmental conditions based only on the output vibration data gathered by accelerometer sensors. The proposed strategy has been tested through experimental laboratory tests on a scaled model.


Sign in / Sign up

Export Citation Format

Share Document