scholarly journals Frequency Dependent Magnetic Susceptibility in Topsoil of Bandung City, Indonesia

2021 ◽  
Vol 873 (1) ◽  
pp. 012016
Author(s):  
K H Kirana ◽  
J Apriliawardani ◽  
D Ariza ◽  
D Fitriani ◽  
E Agustine ◽  
...  

Abstract Soil contains lithogenic components as well as anthropogenic components including combustion residues from traffic activities. The high traffic activities in major cities such as Bandung have caused the air pollution level to increase significantly. These activities might also produce significant combustion residues that accumulate, among others, in the topsoils. Compared with lithogenic components in topsoil, the anthropogenic combustion residues might have different magnetic signatures that could be detected by magnetic measurements. In this study, 38 topsoil samples from 19 roadside sampling points in Bandung City were collected and magnetically analysed to map the magnetic signatures due to traffic activities. The samples were measured for magnetic susceptibility using Bartington MS2B Susceptibility Meter and hysteresis parameter analysed from Vibrating Sample Magnetometer (VSM). The results show that the values of mass-specific magnetic susceptibility (χLF) vary from 391.20 to 1835.20×10-8 m3/kg with the average value of 1012.16 × 10-8 m3/kg while the values of frequency dependent susceptibility (χFD%) vary from 0.54% to 4.48% with the average value of 1.9%. The relatively high value of magnetic susceptibility indicates higher concentration of magnetic minerals compared to that of pristine topsoil around Bandung. This is in agreement with similar studies on roadside topsoil elsewhere. The poor correlation between mass-specific magnetic susceptibility and frequency dependent magnetic susceptibility infers that the magnetic minerals are predominantly non superparamagnetic. This finding is supported by magnetic hysteresis parameters showing that the predominant grains are likely to be pseudo-single domain (PSD) if magnetite is assumed to be the predominant magnetic mineral. Similar studies in German and China reported that the predominant magnetic mineral is mixture of single domain to multi domain magnetite.

2021 ◽  
Vol 7 (3) ◽  
pp. 381
Author(s):  
Dini Fitriani ◽  
Widya Utami ◽  
Kartika Hajar Kirana ◽  
Eleonora Agustine ◽  
Siti Zulaikah

A number of activities occur around the Cikijing River in Rancaekek area, West Java, such as industrial and domestic activities. The various activities could decrease the quality of the river and surrounding environment due to anthropogenic pollutants that might be produced. Since the Cikijing River is also used as the source of irrigation, paddy fields around the river could be also be affected. The presence of pollutants in river sediments and agricultural soils over a long period could change their magnetic properties. Magnetic susceptibility of Cikijing River sediments and soils of the paddy fields in the surrounding have been examined considering that magnetic properties could represent environmental conditions. The results show that river sediments have magnetic susceptibility (cLF) in range of 356.2-456.3 (×10-8) m3kg-1, whereas soils samples have cLF varying from 94.1 to 347.1 (×10-8) m3kg-1, suggesting domination of ferrimagnetic minerals. The cFD (%) is <4% indicating the anthropogenic origin of magnetic minerals.  Electron microscopy images show the imperfect octahedral and spherules shapes of magnetic grains that supports magnetic susceptibility analysis about the source of magnetic minerals. Elemental composition analysis reveals Fe and O’s content as main elements, including minor elements of Ca, Mg, Al. Si, Ti and Cr


2017 ◽  
Vol 209 (2) ◽  
pp. 654-660 ◽  
Author(s):  
Hana Grison ◽  
Eduard Petrovsky ◽  
Ales Kapicka ◽  
Hana Hanzlikova

Abstract In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10−8 m3 kg−1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10−8 m3 kg−1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (&lt;2 mm) and the coarse fraction (4–10 mm) samples down the soil profile.


2020 ◽  
Author(s):  
Yin-Sheng Huang ◽  
Chorng-Shern Horng ◽  
Chih-Chieh Su ◽  
Shu-Kun Hsu ◽  
Jing-Yi Lin

&lt;p&gt;Marginal areas off southwestern Taiwan have been widely considered a high potential reservoir of gas hydrates based on several geophysical, geological, and geochemical investigations since the past decades. First gas hydrate sample has been collected on 21 June 2018 during the cruise MD214 at the core site MD18-3542 on the South Yung-An East Ridge. In the study, we focus on magnetic properties of this MD core. The most attractive feature in the magnetic susceptibility is an abrupt drop recorded at about 4 meters core depth. To clarify and identify the dominant magnetic mineral in the core, hysteresis loop parameters were first measured and then presented on the Day Plot, and further the X-ray diffraction analysis was applied to the selected core samples. Based on the magnetic results, the clear drop in the magnetic susceptibility is related to the change of dominant magnetic minerals in core sediments. Before about 4 meters core depth, the dominant magnetic mineral remains detrital magnetite. Below the depth, however, core sediments should have been infected by methane released by gas hydrate dissociation. Authigenic greigite and pyrite have become dominant, and therefore low magnetic susceptibility appears below 4 meters core depth.&lt;/p&gt;


2019 ◽  
Vol 218 (2) ◽  
pp. 1442-1455
Author(s):  
D K Niezabitowska ◽  
R Szaniawski ◽  
M Jackson

SUMMARY Organic matter preservation and associated conditions during deposition, important in the context of fossil fuel exploration, are commonly determined by advanced geochemical analyses. However, the relation between organic matter preservation and magnetic mineral composition remains poorly constrained. The aim of the studies was to check the potential of magnetic mineral differentiation between facies containing various amounts of organic matter as a factor to better understand the processes which influence water chemistry at the bottom of sedimentary basins, and thus to better understand factors controlling the preservation of organic matter. To determine the composition and the properties of magnetic minerals, detailed low-temperature measurements of Saturation Isothermal Remanent Magnetization and hysteresis loops were performed on two types of rocks, Silurian shales from the Baltic Basin (northern Poland). The analysed shale facies are characterized by similar thermal evolution, but different amounts of organic matter: the Pelplin Formation, containing a modest content of organic matter, in which we also examined early diagenetic carbon concretions; and the Jantar Formation, which represents an organic-rich ‘sweet spot’ layer. In both facies, the results indicate the presence of multi- or pseudo-single domain magnetite, which is interpreted as detrital in origin. However, the main observation gained from this study is the relation between magnetic mineral assemblage in the studied shales and the amount of organic matter: in the rocks with modest amounts of organic matter we observed hematite, while in organic-rich layers hematite was absent. Hematite (mostly single-domain grains) preserved in the Pelplin Formation suggests that stable oxygen-rich conditions were present at the bottom of the sedimentary basin continuously during deposition, concretion cementation and compaction. In turn, its absence in the Jantar Formation suggests that during sedimentation and early diagenesis more anoxic conditions appeared. Generally, findings show that the presence of hematite is related to the significantly lower amount of organic matter in sedimentary rocks. Thus, presence of this mineral may be a useful indicator of organic matter preservation.


2018 ◽  
Vol 15 (2) ◽  
pp. 112
Author(s):  
Arif Budiman ◽  
Dwi Puryanti ◽  
Febri Naldi

Landslide is a disaster that can harm properties and souls. Losses due to landslide can be minimized if there are known signs of landslide.. In this research, the landslide indicator is known through the analysis of the magnetic susceptibility of topsoil. This research is a case study conducted at Bukit Sula, Talawi District, Sawahlunto City.Soil samples were taken from two locations in Sula Hill, which are vegetated location (location A) and unvegetated location (location B). This research’s samples took with downward vertical  of each 100 m was taken with a space range of 5 m, so that is obtained 21 sampling points at each of these locations. Measurement of magnetic susceptibility value using Bartington Magnetic Susceptibility Meter measured at two frequencies, namely low frequency of 0.465 kHz (χLF) and high frequency of 4.65 kHz (χHF). At location A the obtained average value of χLF is 804.05×10-8 m3kg-1while the average value of χHF is 804.25×10-8 m3kg-1. At location B the obtained average value of χLF is 9.85×10-8 m3kg-1, while the average value of χHF is 9.64×10-8 m3kg-1. XRF test result showed that magnetic minerals in samples at both locations a hematit (Fe2O3). Based on the comparison of susceptibility value and concentration of hematite and quartz minerals between sample of location A and location B, it can be said that location B has been eroded. Based on the presence of superparamagnetic grain, the samples taken from location B have finer grains than the samples at location A. Scanning Electron Microscope (SEM) also shows that sample B has finer grains than the sample B.  These are because location B is an area without vegetation, causing rain drop directly into the soil and can decrease the level of soil grain attachment. Therefore, location B more likely occurred landslide than location A.


2020 ◽  
Vol 35 (1) ◽  
Author(s):  
Siti Zulaikah ◽  
Rini Pujiastuti ◽  
Ghyfanny An Afrillah

Weathering is a geological phenomenon that is often an important considered because of its destructive properties, mainly in subsurface. Many parameters are used to measure the presence of weathering indications. This study focuses on testing of magnetic susceptibility (c), compound oxide content and Fe3O4/Fe2O3 ratio that have been selected as an indicators of weathering process. This study explains in detail the quantitative analysis of weathering based on these parameters in basaltic andesite rocks found in coastal atmospheric areas. The results obtained for weathered rocks, magnetic susceptibility, compound oxide content such as CaO and the Fe3O4/Fe2O3 ratio has decreased significantly. In the coastal atmosphere, the weathering of basaltic andesite rocks also marked by the distribution of magnetic minerals which tend to be in the domain of pseudo single domain (PSD) or single domain (SD). Thus it can be concluded that both of low frequency magnetic susceptibility (clf), CaO and Fe2O3 content and also the Fe3O4/Fe2O3 ratio can be used as weathering level indicators.


2019 ◽  
Vol 967 ◽  
pp. 292-298 ◽  
Author(s):  
Arini Tiwow Vistarani ◽  
Arsyad Muhammad ◽  
Sulistiawaty ◽  
Jeanne Rampe Meytij ◽  
Indira B. Tiro Winda

Analysis on magnetic minerals of iron sand in Sampulungan Beach, Takalar Regency based on magnetic susceptibility value has been conducted. Iron sand was taken on 30 points and extracted using a rod magnet, then measured magnetic susceptibility using Bartington susceptibility meter MS2 with the MS2B sensor. Furthermore, types of magnetic minerals were analyzed based on the value of magnetic susceptibility. The results showed that the percentage of magnetic mineral was higher along the trajectory near residential areas. Magnetic susceptibility values ranged from 33932.62 x 10-8 m3/kg to 71829.96 x 10-8 m3/kg. Based on the value of magnetic susceptibility, the dominant type of magnetic mineral in Sampulungan Beach is magnetite (Fe3O4) of 76 wt.%. The high magnetite potential in Sampulungan Beach can be further processed to be used in the metal industry.


2016 ◽  
Vol 45 (8) ◽  
pp. 3616-3626 ◽  
Author(s):  
Apoorva Upadhyay ◽  
Chinmoy Das ◽  
Stuart K. Langley ◽  
Keith S. Murray ◽  
Anant K. Srivastava ◽  
...  

The crystal structures are reported for three heterometallic Ni2Ln and a Ni2Dy2 complex, using the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol. Detailed dc and ac magnetic susceptibility studies were reported for all the complexes. The complexes 3 and 4 shows frequency dependent out-of-phase susceptibility signals.


Sign in / Sign up

Export Citation Format

Share Document