scholarly journals Analysis of shear strength of the expansive soil stabilized with kaolin at various soaking times

2021 ◽  
Vol 878 (1) ◽  
pp. 012050
Author(s):  
R P W Gultom ◽  
R M Simanjuntak

Abstract Expansive clay soils are high shrinkage soils that have low bearing capacity. So an effort is needed to reduce the nature of its swelling. One effort that can be done is the method of soil stabilization, where the soil is mixed with materials that can reduce soil swelling and increase the shear strength of the soil. One of the materials that can be used is kaolin powder. Kaolin is a stabilizing agent found in nature so it is easy to obtain. The purpose of this research is to analyse the decrease of expansive soil swelling and the value of its unconfined compression strength at various soaking times. The test was carried out by mixing 9% kaolin powder against dry soil weight. The stabilized soils were then compacted as samples to be soaked with time variations of 0 days, 3 days, 7 days, 10 days, and 14 days. The results of the test after soaking 14 days is a decrease of the stabilized soil swelling value up to 67.78%. The unconfined compression strength is increase up to 77.28% compared to its natural condition.

Author(s):  
K.U. Arathi ◽  
K.M. Arhulya ◽  
V. Vinaya ◽  
P.V. Pooja ◽  
V.V. Athira

Black cotton soil is a soil with low bearing capacity, swelling and shrinkage characteristics. Due to its peculiar characteristics, it forms a very poor foundation material. As black cotton soil is an expansive soil; it creates problem for lightly loaded structure than moderately loaded structure. Through this project, we are trying to study the improvements in the properties of soil by adding coconut fiber of varying percentages. Tests will be conducted to determine liquid limit and unconfined compression strength. Stabilization of soil is an effective method for improving the properties of soil. It has great significance in the future projects. Keywords: Soil stabilization, CBR, Atterberg limits


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


2020 ◽  
Vol 63 (3) ◽  
pp. 13-20
Author(s):  
Jijo James ◽  
Priya Jothi ◽  
P. Karthika ◽  
S. Kokila ◽  
V. Vidyasagar

The investigation focussed on the possibility of replacing lime in soil stabilization using Egg Shell Ash (ESA), a waste derived from poultry industry. An expansive soil was characterized for its properties in the lab. The minimum lime content required for modification of soil properties was determined from the Eades and Grim pH test. This lime content came out to be 3%. The lime content was replaced using ESA in the proportions of 33%, 50%, 67% and 100%. Unconfined compression test specimens of dimension 38 mm x 76 mm were cast for different combinations and were cured for periods of 3, 7 and 28 days. Samples were also subjected to 1, 3 and 5 cycles of wetting and drying to understand its durability. After the designated curing periods and cycles of wetting and drying, they were strained axially till failure. Atterberg limits tests were done to determine the plasticity of the stabilized soil. The strength results indicated that ESA cannot be used under normal conditions as a replacement for lime, however, ESA replacement resulted in good durability of the specimens under conditions of wetting and drying. It was concluded that ESA replacement of lime can be adopted in conditions of wetting and drying.


2021 ◽  
pp. 17-23
Author(s):  
Soewignjo Agus Nugroho ◽  
Ferry Fatnanta ◽  
Giri Prayoga

Tenayan Raya Subdistrict is an area that has a thickness of soft clay layer. Some cases of building failure were cracks and tilts due to high shrinkage of soil. Nearby is also a brick home industry center, where ashes are produced from bricks burning. Soil Improvement of Tenayan-Raya's Clay and utilization of brick ash will be carried out in this research. This study aims to stabilize the soil with lime and utilize the brick ash to improve shear strength and bearing capacity of the soil. The study was conducted in the laboratory by making several combinations of content clay, lime, and Brick Ash (BA), for the soil mixture which will be added with 10% ash brick. The effect of curing and soaked will also be seen for its rising on soil properties of Unconfined Compression Strength, and CBR laboratories. The influence of water will also be reviewed on the dry side, optimal moisture content, and wet side. The test results show that the Soil has Low Plasticity soil type category CL-ML symbols, according to the Unified classification. Increasing of strength due to stabilization with lime is obtained in conditions of water in optimal moisture content, where the addition of lime is 10% and 10% brick ash, was produced to increase the maximum value of Unconfined Compression Strength and CBR laboratory value. Curing setup time and saturation (soaked) also had affect the value of Unconfined Compressive Strength and CBR laboratory test. At longer time for curing, shear strength will rise proved by the value of UCS Test andbearing capacity value also increase that can be seen of the laboratory CBR test. Curing will make the shrinkage of clay reduced, this can be proven from differences value of Unconfined Compressive strength test between samples with and without soaked, are relatively small. 


2013 ◽  
Vol 664 ◽  
pp. 760-763 ◽  
Author(s):  
Xin Zhang ◽  
Xin Ping Zhang ◽  
Hong Tao Peng ◽  
Qiang Xia ◽  
Jun Wang

TerraZyme as an enzymatic soil stabilizer was used in this research. The stabilized soil was mixed with TerraZyme in proper proportion to determine the relationship of unconfined compression strength and microstructure caused by the introduction of TerraZyme. The experimental results show that the unconfined compressive strength of stabilized soil with TerraZyme added is higher than that without TerraZyme. The micrographs of scanning election microscopy (SEM) indicate that the microstructure of the stabilized soil sample with TerraZyme added is denser than that without TerraZyme. This is because the particles of stabilized soil sample treated with TerraZyme are more coarse and blocky than those untreated with TerraZyme. The stabilized soil is with fewer pores than that without TerraZyme. This kind of compact microstructure should be the basis of higher unconfined compressive strength of stabilized soil with TerraZyme added.


2019 ◽  
Vol 258 ◽  
pp. 01019
Author(s):  
John Tri Hatmoko ◽  
Hendra Suryadharma

A series of experimental programs was undertaken to investigate mechanical behaviour of bagasse ash stabilized organic soil. Preliminary experiment was done to verify the chemical and physical characteristics of bagasse ash and organic soil. The following experiment was then performed to study the improvement of unconfined compression strength of bagasse ash stabilized organic soil. In this research, three different organic soils and four different bagasse ashes were used. The soil was mixed with 10, 20 and 30% bagasse ash, then a set of unconfined compression tests were performed. In general, the results indicate that the unconfined compression strength of stabilized soil improve proportional to the percentage of bagasse ash. And, the quick lime content (CaO), ratio between quick lime and silica (CaO/SiO2), and ratio between quick lime and the sum of silica and alumina {CaO/(SiO2+Al2O3)} were the fundamental factors affecting the improvement of bagasse ash stabilized soil unconfined compression strength. The significant improvement occurs on 0.25 < (CaO/SiO2) < 1.00, and 0.20< (CaO/(SiO2+Al3O3) < 0.67. In contrast, organic content decreased unconfined compression, and maximum dry density (MDD) of stabilized soil. The addition of bagasse to the organic soil, however, does not significantly improve the unconfined compression strength, then addition of 6, 8, and 10% calcium carbide residue (CCR) was performed to the bagasse ash stbilized organic soil to get better engineering performance of stabilized soil. For 9% CCR, qu improve from 93 to 208 kPa.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jijo James ◽  
P. Kasinatha Pandian

The study dealt with the effect of addition of sugarcane bagasse ash (BA) on the strength development of a lime stabilized expansive soil. Unlike previous investigations with combinations of lime and BA, this study compares the effect of lime contents determined by scientifically established procedures and the effect of BA on the stabilization of lime at different proportions with additional microstructural investigations. The minimum lime content required for stabilization known as initial consumption of lime (ICL) was determined using the Eades and Grim pH test as 5.5%. The optimum lime content (OLC) was determined using unconfined compression strength (UCS) tests as 7%. Another lime content less than ICL was randomly adopted as 3%. The three lime contents were mixed with 0.25%, 0.5%, 1%, and 2% BA. UCS samples of dimension 38 mm × 76 mm were prepared at a fixed dry density and moisture content and cured for periods of 2 hours (0 days), 3, 7, 14, and 28 days to study the development of strength and effect of BA. Mineralogical and microstructural analyses were performed on the pulverized UCS samples after failure. The results revealed that the addition of BA increased the immediate, early, and delayed strength of lime stabilized soil further, even when the lime content was lower than ICL. Addition of BA produced maximum immediate, early, and delayed strength gains of 58.3%, 20.7%, and 32.7%, respectively. Higher proportion of BA was required when lime content was above ICL, for maximum strength. Addition of BA resulted in better utilization of quartz in lime-soil reactions leading to formation of CSH and CAH minerals. A dense compact matrix was seen on analyzing the microstructure of the stabilized soil composite.


Sign in / Sign up

Export Citation Format

Share Document