scholarly journals Understanding Spatial Planning Policies in Responding to Urban Heat Island Using GIS Analysis in The Kendal Industrial Area

2021 ◽  
Vol 887 (1) ◽  
pp. 012021
Author(s):  
N. M. Ariani ◽  
M. I. H. Wijaya ◽  
B. N. Priambudi

Abstract The formulation of spatial planning strategies in an area is strongly influenced by the development of issues and problems in the area. Spatial planning policies contained in a regional regulation must be able to be aware of and deal with all current and future problems. Urban Heat Island) is currently a very growing issue in various regions in Indonesia which is influenced by many factors, one of which is the increase in built-up land. The issue of the Urban Heat Island is important because its effects are starting to be felt, including natural degradation, health, economic losses to excessive energy use. One of the most dominant areas in contributing to hot temperatures in urban areas is the industrial area. Kendal Regency is one of the regions in Indonesia with a fairly dominant industrial estate development. Industrial areas that are synonymous with built-up land, air pollution and the lack of green open spaces are one of the triggers for an increase in temperature. In contrast to the negative effects caused, the development of industrial estates in Kendal Regency is one of the drivers of the regional economy so that its existence is considered important. This study aims to understand spatial planning policies in response to the Urban Heat Island in the Kendal Regency industrial area. The research method used is spatial analysis using Landsat 8 imagery with supervised classification to see the UHI phenomenon in the Kendal industrial area, the results of which are used as a basis for evaluating spatial policies in response to UHI. The spatial policy of Kendal Regency in the designation of industrial areas has not fully responded to the UHI phenomenon in industrial areas, although 13 of the 14 clauses indicate the potential for an increase in surface temperature. UHI in the Kendal Regency spatial policy has not been seen as a threat to urban areas. Mitigation efforts against UHI mentioned are only in the form of providing green open space and waste management. It is hoped that this research can be input in improving spatial planning policies in the Kendal Regency industrial area, especially to suppress the increase in temperature.

Author(s):  
Alberto Previati ◽  
Giovanni B. Crosta

AbstractUrban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and + 0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.


Biomimetics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 48
Author(s):  
Kevin Araque ◽  
Paola Palacios ◽  
Dafni Mora ◽  
Miguel Chen Austin

In recent years, demographic growth has caused cities to expand their urban areas, increasing the risk of overheating, creating insurmountable microclimatic conditions within the urban area, which is why studies have been carried out on the urban heat island effect (UHI) and its mitigation. Therefore, this research aims to evaluate the cooling potential in the application of strategies based on biomimicry for the microclimate in a historical heritage city of Panama. For this, three case studies (base case, case 1, and case 2) of outdoor thermal comfort were evaluated, in which the Envi-met software was used to emulate and evaluate the thermal performance of these strategies during March (highest temperature month) and October (rainier month). The strategies used were extracted from the contrast of zebra skin, human skin, evaporative cooling, and ant skin. The results showed a reduction of 2.8 °C in the air temperature at 11:00, the radiant temperature decreased by 2.2 °C, and the PET index managed to reduce the thermal comfort indicator among its categories. The importance of thinking based on biomimicry in sustainable strategies is concluded; although significant changes were obtained, high risks of discomfort persist due to the layout and proximity of the building.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Qian Sun ◽  
Grace Yun ◽  
Ting Ling

<p><strong>Abstract.</strong> The impact of heat on health can be more significant in urban areas with more population and where the microclimate is often unintentionally modified to create the Urban Heat Island (UHI) effect. Extreme heat and UHI pose a risk to the health of vulnerable individuals, such as the elderly, the very young, and those need care. Vulnerability has become a central concept in climate change research and policy. To assess it, many studies have used equal weighted cumulative indices to aggregate multiple factors into a composite HVI (Heat Vulnerability Index) and analyse the differences and intensity across local areas and regions. However, the aggregation and equal weighting rationality, and the disregard of spatial correlation can result in inaccurate explanation on local vulnerabilities.</p><p>This study develops an enhanced index of population heat vulnerability (HVI) in Perth metropolitan area, Western Australia (WA), using environmental, demographic, and health-related risk factors for heat exposure, sensitivity and adaptive capability. Satellite derived urban heat island data and community profiles were integrated by a spatial risk assessment methodology to highlight potential heat health risk areas and build the foundations for mitigation and adaptation plans. Principal component analysis (PCA) was used to identify the key risk factors for heat vulnerability. Geographically weighted regression (GWR) were used to model the spatial relationships between temperature and other contributing factors to produce weights for calculating HVI. The index was finally mapped to produce a spatial representation of risk. The maps of spatial heat health vulnerability provide information to target heat-related health risks by aiding policy advisors, healthcare professionals, and ancillary services to develop heatwave preparedness plans at a local scale.</p>


Author(s):  
Yoichi Kawamoto ◽  
Hiroshi Yoshikado ◽  
Ryozo Ooka ◽  
Hiroshi Hayami ◽  
Hong Huang ◽  
...  

2019 ◽  
Vol 40 (3) ◽  
pp. 290-295 ◽  
Author(s):  
Geoff Levermore ◽  
John Parkinson

On top of climate change and its consequent temperature rises, urban areas have the added burden of the urban heat island (the urban area being warmer than the rural area especially at night under calm, cloud-free conditions). The urban heat island intensity (the difference between the rural air temperature and that in the city centre) can be as large as 10K for the major cities such as London. The urban heat island intensity, consequently, can have a significant effect on the sizing of heating, ventilating and air-conditioning plant and its energy consumption. At present, designers have access to empirical factors for design days only in June, July and August from the Chartered Institution of Building Services Engineers Guide. Or they can use the latest Design Summer Year which implicitly includes the urban heat island intensity. However, the empirical model discussed in this paper allows the designer to add on the hourly urban heat island intensity for central London to any recent year’s hourly weather data set from London Heathrow or Bracknell, a more rural site. The model is similar to one for Manchester, suggesting that the model may well be of application to other UK cities. Practical applications: Most buildings that building services engineers and other building designers are involved with are in urban or city centres. However, the weather data for their designs are based on near-rural weather data, which does not include the urban heat island effect. This paper describes the urban heat island effects that a designer needs to consider and the adjustments that can be made, related to London.


2020 ◽  
Author(s):  
Eunice Lo ◽  
Dann Mitchell ◽  
Sylvia Bohnenstengel ◽  
Mat Collins ◽  
Ed Hawkins ◽  
...  

&lt;p&gt;Urban environments are known to be warmer than their sub-urban or rural surroundings, particularly at night. In summer, urban heat islands exacerbate the occurrence of extreme heat events, posing health risks to urban residents. In the UK where 90% of the population is projected to live in urban areas by 2050, projecting changes in urban heat islands in a warming climate is essential to adaptation and urban planning.&lt;/p&gt;&lt;p&gt;With the use of the new UK Climate Projections (UKCP18) in which urban land use is constant, I will show that both summer urban and sub-urban temperatures are projected to increase in the 10 most populous built-up areas in England between 1980 and 2080. However, differential warming rates in urban and sub-urban areas, and during day and at night suggest a trend towards a reduced daytime urban heat island effect but an enhanced night-time urban heat island effect. These changes in urban heat islands have implications on thermal comfort and local atmospheric circulations that impact the dispersion of air pollutants. I will further demonstrate that the opposite trends in daytime and night-time urban heat island effects are projected to emerge from current variability in more than half of the studied cities below a global mean warming of 3&amp;#176;C above pre-industrial levels.&lt;/p&gt;


2020 ◽  
Author(s):  
Paul Hamer ◽  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
Stéphanie Faroux ◽  
Herbert Formayer ◽  
...  

&lt;p&gt;Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.&lt;/p&gt;&lt;p&gt;We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21&lt;sup&gt;st&lt;/sup&gt; century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.&lt;/p&gt;&lt;p&gt;Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.&lt;/p&gt;&lt;p&gt;Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K.&amp;#160; Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.&lt;/p&gt;&lt;p&gt;This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.&lt;/p&gt;&lt;p&gt;We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.&lt;/p&gt;


2013 ◽  
Vol 734-737 ◽  
pp. 1865-1869 ◽  
Author(s):  
Vincenzo Franzitta ◽  
Alessia Viola ◽  
Marco Trapanese ◽  
Silvia Costanzo

In this paper we propose a case study of urban heat island applied to Palermo. The urban heat island (UHI) is the most studied of the climate effects of settlements. The UHI refers to the generally warm urban temperatures compared to those over surrounding, non-urban, areas. The aim of this paper is to find a connection among the average rise in temperature and the modification of albedo.


2015 ◽  
Vol 23 (3) ◽  
pp. 47-57 ◽  
Author(s):  
Hana Středová ◽  
Tomáš Středa ◽  
Tomáš Litschmann

Abstract Air temperature and humidity conditions were monitored in Hradec Králové, Czech Republic, by a network of meteorological stations. Meteorological sensors were placed across a representative variety of urban and suburban environments. The data collected over the 2011–2014 period are analysed in this paper. The data from reference standard meteorological stations were used for comparison and modelling purposes. Air temperatures at the points of interest were successfully modelled using regression relationships. The spatial expression of point measurements of air temperatures was provided by GIS methods in combination with CORINE land cover layer, and satellite thermal images were used to evaluate the significance of these methods. The use of standard climate information has low priority for urban planners. The impact of the urban heat island on city residents and visitors was evaluated using the HUMIDEX index, as it is more understandable for urban planners than temperature conditions as such. The aim of this paper is the modification, description and presentation of urban climate evaluation methods that are easily useable for spatial planning purposes. These methods are based on comprehensible, easily available but quality data and results. This unified methodology forms a theoretical basis for better urban planning policies to mitigate the urban heat island effects.


Sign in / Sign up

Export Citation Format

Share Document