scholarly journals Impact of Steel Fiber on the Mechanical Property of Concrete Containing Mineral Admixture

2021 ◽  
Vol 889 (1) ◽  
pp. 012004
Author(s):  
Aamir Ahmad Bhat ◽  
Shamshad Alam

Abstract This article analyzes the mechanical behaviour of concrete containing fly ash, silica fume, and steel fibre, with 331 kg/m3 cement, 674 kg/m3 fine aggregate, and 1171 kg/m3 coarse aggregate. A concrete mixture with a water-binder ratio of 0.40 is prepared. Mineral admixtures such as silica fume and fly ash were also added to the cement in concentrations of 10% and 20%, respectively. The steel fibres are then incorporated in various proportion (0.5 percent, 1.0 percent, 1.5 percent, and 2.0 percent). The cube-shaped sample is used to test the compressive strength of hardened concrete with and without steel fibre, while the cylindrical sample and beam are utilised for indirect tensile and flexural strength testing. On the three replicas, all of the tests with various percentages of steel fibre were carried out, and the average value is reported in this article. The concrete without steel fibre had average compressive, flexural, and tensile properties of 60.05 MPa, 5.72 MPa, and 9.45 MPa, respectively and after adding 2 percent steel fibre, it increased to 74.25 MPa, 6.14 MPa, and 23.68 MPa, respectively, after 28 days. By performing a nonlinear analysis of the experimental data, a link between the percentages of steel fibre, curing days, compressive-tensile strength ratio, and compressive-flexural strength ratio has been established. The current study will help in lowering cement use, therefore minimising the negative environmental effect of cement manufacturing.

2011 ◽  
Vol 71-78 ◽  
pp. 755-759
Author(s):  
Ying Tang ◽  
Guo An Wang

This paper is focused on the method for improving capability of anti-sulfate corrosion of concrete. Based on the performance characteristics of mineral admixture, propose a method that mixing concrete with complex multi-mineral admixture to improve the effect of anti-sulfate corrosion. Finally, the ability of anti-sulfate corrosion and anti-dry-wet cycle, in different case, is studied and compared. The results show that concrete mixed with complex multi-mineral admixture is advantageous to improve the anti-sulfate corrosion effects of the concrete. The proportion of mineral admixtures has significant influence on the anti-sulfate corrosion effect. As the silica fume and slag content increased, the fly ash content decreased, the ability of anti-sulfate corrosion enhanced.


2015 ◽  
Vol 659 ◽  
pp. 143-148 ◽  
Author(s):  
Rachamongkon Wongruk ◽  
Smith Songpiriyakij ◽  
Piti Sukontasukkul ◽  
Prinya Chindaprasirt

In this study, the mechanical properties of steel fibre reinforced geopolymer (SFRG) are investigated. The geopolymer is consisted of fly ash, silica fume and activator solution, sodium silicate and sodium hydroxide. Five mix proportions of fly ash and silica fume are varied to study the effect of fly ash/silica fume ratios (FA/SF). This experimental series focus mainly on flexural strength and flexural toughness performance of SFRG. Hooked-ends steel fibers are used at 0.5% and 1% by volume fractions. The experiment is carried out based on ASTM C1609 (beam specimens) for flexural performance. The results showed that fibre can significantly enhance the both flexural strength and toughness of geopolymer. The enhancement also increases with the increasing fibre volume fraction.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


2013 ◽  
Vol 639-640 ◽  
pp. 417-422
Author(s):  
Wei Dong Chen ◽  
Jian Yin ◽  
Wei Min Song ◽  
Yi Chi

It was tested the strength and wear value of recycled aggregate concrete mixing fly ash, slag, silica fume and double-mixture or three-mixture in deferent age. The results show that the wear value of recycled aggregate concrete mixing 30% fly ash is more than reference concrete at 3days, but can improve final wear-resisting property significantly. The wear value of recycled aggregate concrete mixing 30% double-mixture of fly ash and silica fume is much lower than reference concrete at 3days, and improve early wear-resisting property significantly. The flexural strength of the concrete is 4.26MPa at 3days, which can satisfy the traffic requirement. The wear value of recycled aggregate concrete mixing 30% three-mixture of fly ash, slag and silica fume is lower than reference concrete at 3days, but the declining rate is not significant. It investigates mechanics of double-mixture technique which improves wear-resisting property at the same time.


Vestnik MGSU ◽  
2019 ◽  
pp. 102-117 ◽  
Author(s):  
Duc Vinh Quang Nguyen ◽  
Olga V. Aleksandrova ◽  
Yuriy M. Bazhenov

Introduction. This study focuses on the use of silica fume partially replacing cement with 0, 5, 7.5, 10, 12.5 and 30 % constant replacement of fly ash by weight of cement in concrete. Concrete is probably the most extensively used construction material in the world. But the conventional concrete is losing its uses with time and high-performance concrete (HPC) is taking that place. HPC has superior mechanical properties and durability to normal strength concrete. Because of, the microstructure of HPC is more homogeneous than that of normal concrete (NC) due to the physical and chemical contribution of the mineral admixtures as well as it is less porous due to reduced w/c ratio with the addition of a superplasticizer. The inclusion of additives helped in improving the properties of concrete mixes due to the additional reduction in porosity of cement paste and improving the particle packing in the interfacial transition zone (between cement paste and the aggregates).In this experimental investigation the behavior of HPC with silica fume and fly ash with and without quartz powder were studied. The water-binder ratio was kept 0.3 and 20 % quartz flour as partial replacement of fine aggregate for all cases. Materials and methods. Used materials in Vietnam, as follow, Sulfate-resisting Portland cement - PCSR40 (type V) of company Luks Cement (Vietnam) Limited was used in the work. Crushed granite of fraction 9.5…20 mm - as coarse aggregate, Natural sand from Huong river of 0.15…2.5 mm fraction with the fineness modulus of about 3.0 and quartz powder with an average particle size of 5…10 μm were used as fillers; Sika® Viscocrete®-151 is a superplasticizer based on a blend of 3rd generation PCE polymers was used as a plasticizing admixture. The flg ash from Pha Lai thermal power plant and Sika silica Sikacrete® PP1 (particle size < 0.1 μm) was used as a mineral active admixture. The study of strength and technological properties of high-performance concrete was performed by using standard methods. Results. Established by icate that, the workability and strength increase at a certain level and after that, they decline with further increase in the replacement level of silica fume is 12.5 %, on the basis of 30 % FA replacement, the incorporation of 10 % SF showed equivalent or higher mechanical properties and durability compared to the reference samples. Conclusions. HPC consists of mineral admixtures such as silica fume and fly ash use combine quartz powder and superplasticizer helped in improving the strength and durability of concrete mixes due to the additional reduction in porosity of cement paste and an improved interface between it and the aggregate. With 30 % fly ash is optimum dosage used to replacement of cement, incorporation 10 % SF (by weight) and combine of partial replacement of fine aggregate by 20 % quartz powder. On the other hand, a few mathematical equations can be used to derive the durability properties of concrete based on its compressive strength.


2019 ◽  
Vol 5 (1) ◽  
pp. 18 ◽  
Author(s):  
Rahul Biswas ◽  
Baboo Rai

The usage of Supplementary Cementitious Materials (SCM) is very much acknowledged due to the several improvements possible in the concrete composites, and because of the general economy. Research work till date suggests that utilization of SCMs enhance a significant number of the performance characteristics of the hardened concrete. The idea of efficiency can be utilized for comparing the relative performance of different pozzolans when incorporated into concrete. The efficiency concept, which was initially developed for fly ash, can be effortlessly connected to other advantageous s as well, such as silica fume, slag and natural pozzolans. A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilization. The paper reviews the literature pertaining to the different efficiency concepts and models present to date that evaluates the strength of concretes containing different SCMs. This short survey demonstrates that there is a need for a superior comprehension of the SCMs in concrete for its powerful usage. Also, it is an effort directed towards a specific understanding of the efficiency of SCMs in concrete.


2012 ◽  
Vol 450-451 ◽  
pp. 738-742
Author(s):  
Xue Fang Wang ◽  
Jian Lan Zheng

Influence of compounded mineral admixtures on shrinkage and early-age cracking behaviors of concrete was studied, based on the fellow factors: fly ash to blast furnace slag(denoted as BSF) ratio, fly ash-metakaolin ratio, BSF-silica fume ratio. Research shows that the Pozzolanic admixtures compounded with cementitious admixtures have complementary and synergistic effect for hydration progress of concrete, which can enhance the volume stability and cracking behaviors of concrete. However, the pozzolanic admixture compounded with other pozzolanic admixture, two pozzolanic admixtures will grab Ca(OH)2 resource. And then if the dosage of mineral admixture is higher, the compounding will result to decrease the volume stability and cracking behaviors of concrete.


2011 ◽  
Vol 675-677 ◽  
pp. 1073-1076
Author(s):  
Zu Quan Jin ◽  
Peng Zhang ◽  
Tie Jun Zhao ◽  
Bao Rong Hou

In this paper, preparation, property study of ultra-strength mortars with mineral admixture and clear river sand was carried out. The mineral admixture include fly ash, ultra-fine GGBS and silica fume. The experimental results show that the compressive strength of mortar improves with increasing amount of silica fume or ultra-fine GGBS. When the content of silica fume or ultra-fine GGBS is 30~35%, the compressive strength and flexural strength of mortar in curing age of 7 days are 100 MPa and 20MPa, respectively. But strength of mortar decreases with the increase replacement rate of fly ash. When the mortar mixes with combined of silica fume and ultra-fine GGBS, the optimum proportion of siliaca fume to ultra-fine GGBS is 2:3. And the compressive strength of mortar in curing age of 7 days is 75~100MPa when the mixed mineral admixture is 40~60%. The compressive strength of mortar is about 90MPa as it mix 60% of cement, 15% of silica fume, 15% of GGBS and 10% of fly ash. Moreover, the ultra strength mortar refines its pore structure and its capiliary pore (≥100nm) amount reduces by 78% compared to ordinary mortar.


2017 ◽  
Vol 266 ◽  
pp. 278-282 ◽  
Author(s):  
Jul Endawati

Pervious concrete primarily is used as a means of storm water management. Taking into consideration the environment issues, the binder can also be formed by partially replaced Portland cement by cementitious materials, such as blast furnace slag fine powder, fly ash and silica fume. The combination of the binder materials was determined based on previous work, which composed of 56% Portland Composite Cement, 15% fly ash Type F, 26% air-cooled blast furnace slag from a local steel Industry and 3% condensed silica fume. The compressive strength of specimens with coarser aggregate was lower compared with the control pervious concrete, but still within the range of the requirement compressive strength according to ACI 522R-2010. The difference of the aggregate size affected the enhancement of the compressive strength. The flexural strength of pervious concrete with aggregate size of 9.5mm-12.5mm tend to be higher compared with that of pervious concrete with smaller aggregate size. Furthermore, the addition of 6% natural fine aggregate while applying higher water/cement ratio could be a contribution to the enhancement of the compressive and the flexural strength.


2012 ◽  
Vol 598 ◽  
pp. 612-617 ◽  
Author(s):  
Ying Li ◽  
Da Hu Dai

In order to improve the microstructure of recycled concrete, the mineral admixtures were mixed into recycled concrete by different mixing method in this paper. It is demonstrated that the early compressive strength of recycled concrete decreased when mixed by fly ash only, but its later strength increasing rate is higher than recycled concrete without fly ash. When mixed fly ash and silica fume in the recycled concrete, the compressive strength of recycled concrete with fly ash and silica fume is higher than the strength of recycled concrete with fly ash only, and its microstructure tend to be dense.


Sign in / Sign up

Export Citation Format

Share Document