scholarly journals Demand and Electricity Energy Mix in Indonesia 2030 with Small Modular Reactor Nuclear Power Plant and Renewable Energy Scenario

2021 ◽  
Vol 927 (1) ◽  
pp. 012025
Author(s):  
Lazuwardi Imani ◽  
Ahmad Agus Setiawan ◽  
Mohammad Kholid Ridwan

Abstract The interest in small modular reactors worldwide has been increasing due to flexibility in the power generation for more comprehensive users and applications. Small Modular Reactors or SMRs can be the primary choice for Indonesia provided with the geographical condition, which consists of many islands and is more flexible in construction compared to the conventional nuclear power plant. The main objective of this paper is to provide an overview projection of demand and energy mix of electrical in Indonesia 2030 with SMRs NPP in the energy mix referring to RUPTL or General Plan of Electricity Supply Indonesia. Using the end-use model, which is total electricity consumption for each electricity sector, it can be calculated how much electricity demand is from these sectors. The scenario uses RUPTL, roadmap from Energy and Mineral Resources Ministry references, and policy of no coal power plant added from 2020 onwards. The results show in 2030, Indonesia needs 577,016.2 GWh of electricity, where the household and industry sectors have the highest electricity needs, which is 44% for the household sector and 31% for the industry. The transformation projection in PLTGU or Combined Cycle Power Plants scenario also shows that without replacing the power plant, renewable along without SMRs only had ±7.49% of the total capacity mix, and the second scenario with SMRs shows that renewable energy share had 16.07%.

2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.


2019 ◽  
Vol 139 ◽  
pp. 01002 ◽  
Author(s):  
Kahraman Allaev ◽  
Tokhir Makhmudov

The data on the current state of energy in Uzbekistan are given. The need to diversify the structure of the energy balance of the republic is shown, which ensures the energy security of the state in the medium and long term. It is argued that the construction of a nuclear power plant in Uzbekistan is not only expedient, but also necessary. In the future, renewable energy and nuclear power plants will become the basis of energy in Uzbekistan.


Author(s):  
Shuichi Umezawa ◽  
Jun Adachi

A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level.


2014 ◽  
Vol 986-987 ◽  
pp. 315-321
Author(s):  
Wen Bin Xiong ◽  
Hou Ming Zhang ◽  
Bo Ping Zhang ◽  
Hu Wei Li ◽  
Gang Wang ◽  
...  

In recent years, advanced small nuclear power reactors, namely small modular reactors (SMRs), gained widespread attention. In areas where energy can’t be provided by large scale reactors and the nuclear power plants with large scale reactors can’t compete with the non-nuclear power plant technology, SMRs, as a versatile distributed integrated energy source, which result in expanding peaceful applications of nuclear energy, have enormous potential. This article describes the characteristics and analyzes prospects and challenges of SMRs.


2021 ◽  
Author(s):  
A.M.A. Dawood ◽  
Emmanuel O. Darko ◽  
Eric T. Glover

Abstract The Ghana Nuclear Power Agenda is a programme laid out by the Ghana Atomic Energy Commission in collaboration with the government of Ghana to guide and facilitate the installation of Ghana’s first ever nuclear power plant. The nuclear power plant is expected to generate between 1000 and 12800 MW of electricity from its very first and final installations in a span of 20 years. Ghana's Third National Communication (TNC) Report to the UNFCCC indicates 59 million metric tons of carbon dioxide (MtCO2e) emission in 2011. Between 1991 and 2011, Greenhouse gas (GHG) emissions grew by 20% as energy intensity of the economy rose alongside with a growing demand in industry, transport and households. If nothing is done to curtail GHG emission from fossil-source power plants, the looming catastrophe of the changing climate will occur faster than we imagine. On the basis of this, advocacy for nuclear power has been intensified in Ghana. Nuclear power is not only environmentally friendly (zero-to-low carbon emission), it is efficient and sustainable source of energy. It offers current and future energy needs without burdening future generations with a broken environment. Using Monte Carlo’s model, the current study estimates a cumulative increase (35%) in CO2 emission between 2016 and 2026 without nuclear power in Ghana’s energy mix. With the inclusion of nuclear power in the country’s energy mix by 2029, the model estimates CO2 emission cut by 12.5% between 2029 and 2039. Thus, given the same period of time, the rate of emission of CO2 was found to be more than twice its reduction.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Petr Neumann

<span lang="EN-GB">While increasing integration of renewable energy sources (RES), which are unregulated and difficult to predict, a large system of nuclear power plants must provide balancing peaks in the production of renewable energy. </span><span><span lang="EN">It is also important to simulate </span></span><span lang="EN-GB">the rapid changes in the power of individual </span><span lang="EN">large Nuclear Power Plant</span><span lang="EN-GB"> (NPP) units, and for these regimes to train operators of nuclear units. Therefore the paper is aimed to i<span>sland operations of more parallel electric</span></span><span><span lang="EN">synchronous generators</span></span><span lang="EN"> c<span>onnected to one</span> s<span>ubstation of a power grid.</span></span>


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Katarzyna Borowiec ◽  
Aaron Wysocki ◽  
Samuel Shaner ◽  
Michael S. Greenwood ◽  
Matthew Ellis

Abstract Introducing large amounts of electricity produced from variable renewable energy sources such as wind and solar decreases wholesale electricity price while increasing the volatility of the market. These conditions drive the need for peak-load power generation, while regulation requirements fuel the push for flexible power generation. The increase of variable renewable energy in the market share, along with falling natural gas prices, makes nuclear power plants less competitive. Thermal storage is being considered to increase the nuclear power plant revenue. Thermal storage increases the flexibility of the nuclear plant system without sacrificing its efficiency. There are multiple opportunities to increase the nuclear power plant revenue, including increased capacity payments, arbitrage, and ancillary services. An economic analysis was performed to investigate the revenue increase of the system with thermal storage. The investment cost was assessed, and net present value was evaluated for the considered scenarios. Two system designs were considered in the analysis: a thermal storage system using the existing power conversion infrastructure and an integrated design with thermal storage fully incorporated into the reactor system design. The preliminary analysis showed that introducing a thermal storage system is profitable for some scenarios considered. Profitability depends significantly on the storage size, output flexibility, share of variable renewable energy, and market characteristics.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1467
Author(s):  
Sangdo Lee ◽  
Jun-Ho Huh ◽  
Yonghoon Kim

The Republic of Korea also suffered direct and indirect damages from the Fukushima nuclear accident in Japan and realized the significance of security due to the cyber-threat to the Republic of Korea Hydro and Nuclear Power Co., Ltd. With such matters in mind, this study sought to suggest a measure for improving security in the nuclear power plant. Based on overseas cyber-attack cases and attacking scenario on the control facility of the nuclear power plant, the study designed and proposed a nuclear power plant control network traffic analysis system that satisfies the security requirements and in-depth defense strategy. To enhance the security of the nuclear power plant, the study collected data such as internet provided to the control facilities, network traffic of intranet, and security equipment events and compared and verified them with machine learning analysis. After measuring the accuracy and time, the study proposed the most suitable analysis algorithm for the power plant in order to realize power plant security that facilitates real-time detection and response in the event of a cyber-attack. In this paper, we learned how to apply data for multiple servers and apply various security information as data in the security application using logs, and match with regard to application of character data such as file names. We improved by applying gender, and we converted to continuous data by resetting based on the risk of non-continuous data, and two optimization algorithms were applied to solve the problem of overfitting. Therefore, we think that there will be a contribution in the connection experiment of the data decision part and the optimization algorithm to learn the security data.


Sign in / Sign up

Export Citation Format

Share Document