scholarly journals Seasonal Spatio-temporal Land Cover Dynamics in the Upper Brantas Watershed

2021 ◽  
Vol 930 (1) ◽  
pp. 012021
Author(s):  
S M Beselly ◽  
R D Lufira ◽  
U Andawayanti

Abstract Quantitative assessment for sustainable watershed management is essential. Hydrological parameters such as stream discharge, surface runoff, infiltration, groundwater recharge, and water quality are susceptible to the changes of the components in the river basin ecosystem. Numerous studies have shown that the Land Use Land Cover (LULC) changes such as deforestation, extensive agriculture, urbanization, and mining are recognized as the main factors to changes in LULC, which are related to the changes of the hydrological components of the river basin of all scale. This paper particularly shows the spatiotemporal variability of LULC in the Upper Brantas Basin and the effects on the river discharge variation. We showed that the changes in LULC, particularly cultivated and managed vegetation and urban/built-up area, contributed significantly to the river discharge. Particularly in the Upper Brantas Basin, it was indicated that almost half of the increased river discharge was explained by the increase of urban/built-up and the decrease in cultivated and managed vegetation area.

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 735 ◽  
Author(s):  
Daniel Dunea ◽  
Petre Bretcan ◽  
Danut Tanislav ◽  
Gheorghe Serban ◽  
Razvan Teodorescu ◽  
...  

The paper reviews the state of water quality in Ialomita River Basin (IRB), Romania, between 2007 and 2018 using the land use/land cover and basin-specific conditions effects on sediments and nutrients load. On-site monitoring was performed in two control sections of the Ialomita River, one in the upper part of the basin (near Targoviste city) and the second near the discharge into the Danube (downstream of Tandarei town). The statistical averages of water parameters for 10 years’ monitoring in the control section that is close to the Ialomita River discharge in Danube were pH = 7.60 (range: 6.41–8.40), NH4-N = 1.20 mg/L (0.02–14.87), alkalinity = 4.12 mmol/L (1.34–6.27), NO3-N = 2.60 mg/L (0.08–17.30), PO4-P = 0.09 mg/L (0–0,31), dissolved oxygen (DO) = 8.87 mg/L (2.72–15.96), BOD5 = 5.50 mg/L (0.01–74.71), suspended solids (TSS) = 508.32 mg/L (15.2–4457), total dissolved salts (TDS) = 733.69 mg/L (455.2–1053), and river discharge = 38.60 m3/s (8.22–165). Expected mean concentration and soil and water assessment tool (SWAT) modeling have been employed in the GIS environment to extend the approach to large spatial patterns within the basin. The estimated average specific emission on the total area for nitrogen was 3.2 kg N/ha, and 0.3 kg P/ha for phosphorus highly influenced by the agricultural activities. The results are useful to raise awareness regarding water-quality degradation and the need to stop and even reverse such trends for local and national sustainable development.


2018 ◽  
Vol 10 (3) ◽  
pp. 257-276 ◽  
Author(s):  
Varun Narayan Mishra ◽  
Praveen Kumar Rai ◽  
Rajendra Prasad ◽  
Milap Punia ◽  
Mărgărit-Mircea Nistor

2017 ◽  
Vol 18 (2) ◽  
pp. 490-503 ◽  
Author(s):  
Mahsa Mirhosseini ◽  
Parvin Farshchi ◽  
Ali Akbar Noroozi ◽  
Mahmood Shariat ◽  
Ali Asghar Aalesheikh

Abstract The present study is an attempt to show how changes in land use and land cover would change the quantity of surface water resources in a river basin in northwestern Iran. In order to detect the changing trend of surface water quantity in the river basin, the long-term statistic data of sediment load and river discharge were gathered over the period between 1987 and 2013. For land use change detection of the river basin, the land use land cover maps of the study area in the years of 1987, 1998, 2002, 2009, and 2013 were prepared from Landsat satellite images using supervised classification method. The changing trend of river discharge showed a significant and positive relationship with rain-fed agriculture (R2 = 0.8152), poor rangeland (R2 = 0.7978), and urban areas (R2 = 0.8377). There was also a strong negative correlation between water discharge and irrigated agriculture (R2 = 0.7286) and good rangeland (R2 = 0.8548). In conclusion, increasing the area of rain-fed agriculture, good rangeland (type IV), and urban land uses, due to their effects on increasing the runoff, have caused an increase in the water flow of Zanjanroud River.


Author(s):  
S. Shukla ◽  
M. V. Khire ◽  
S. S. Gedam

Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.


2020 ◽  
Vol 66 (1) ◽  
pp. 51-58
Author(s):  
Chnadrakesh Maurya ◽  
◽  
V. N. Sharma ◽  

Land use is a man-made dynamic process in which human uses land resource to fulfil their various economic, social and cultural needs and at the same time it also provides a base for development. The proper management needed for sustainable development of land can improve the eco-system and its productivity in a particular geographical region. The present study focuses on spatio-temporal changes in land use and land cover pattern in Auranga river basin of Jharkhand using geospatial approach. Supervised classification technique was applied in this study to detect land use/ land cover changes. The main objective of the study is to analyse temporal change of land use/ land cover pattern during 1996, 2007 and 2018 using various dataset as well as other ancillary data. The result reveales both increase and decrease of the different land use/ land cover classes from 1996 to 2018.


GeoScape ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 19-29
Author(s):  
Monoj Kumar Jaiswal ◽  
Nurul Amin

Abstract Alteration of land-use land cover pattern causes severe consequences on the hydrological system by modifying the rainfall-runoff pattern in a region. The study aimed to investigate the impact of land-use land-cover dynamics on runoff generation in different geomorphic divisions of Panchnoi River basin. The study used the Soil Conservation Service-Curve Number method to estimate runoff generation in the Panchnoi River basin in a GIS platform. This study observed that the conversion of the land-use pattern in the geomorphic zones significantly enhances runoff. The Piedmont experience highest land-use change, where 64.17 km2 forest cover lost to cropland and built-up lands, leads to a notable increase in runoff generation, i.e. from 1 076 mm (52.82% of rainfall) in 1990 to 1 467 mm (70.46% of rainfall) in 2015. The Flood plain and New alluvial plain generates high runoff in the basin as it mostly occupied by human-induced land-uses, i.e. 1 444 mm (72.72% of rainfall) and 1 360 mm (71.70% of rainfall) respectively in 1990, which increase to 1588 mm (79.20%) and 1507 mm (78.69%) runoff respectively in 2015, due to alteration of cropland to built-up lands. In the Old alluvial plain, a marginal land-use change observed resulted in moderate growth in runoff from 1 272 mm (62.35%) to 1 404 mm (66.79%). The study indicates land-use land-cover change invokes to increase runoff generation can give rise severe environmental and economic problems in the river basin, through the occurrence of flashflood and soil erosion. Highlights for public administration, management and planning: • Evaluation of the impact of land-use land cover dynamics on runoff is essential for containing flash flood and water resource management on a basin scale. • Alteration of natural land covers has severe implications in the form of flood, soil erosion, and loss of biodiversity. • Enhanced runoff due to land-use dynamics reduces groundwater recharge rate that may cause drinking water scarcity in the dry season shortly.


Sign in / Sign up

Export Citation Format

Share Document