An investigation on the effect of land use land cover changes on surface water quantity

2017 ◽  
Vol 18 (2) ◽  
pp. 490-503 ◽  
Author(s):  
Mahsa Mirhosseini ◽  
Parvin Farshchi ◽  
Ali Akbar Noroozi ◽  
Mahmood Shariat ◽  
Ali Asghar Aalesheikh

Abstract The present study is an attempt to show how changes in land use and land cover would change the quantity of surface water resources in a river basin in northwestern Iran. In order to detect the changing trend of surface water quantity in the river basin, the long-term statistic data of sediment load and river discharge were gathered over the period between 1987 and 2013. For land use change detection of the river basin, the land use land cover maps of the study area in the years of 1987, 1998, 2002, 2009, and 2013 were prepared from Landsat satellite images using supervised classification method. The changing trend of river discharge showed a significant and positive relationship with rain-fed agriculture (R2 = 0.8152), poor rangeland (R2 = 0.7978), and urban areas (R2 = 0.8377). There was also a strong negative correlation between water discharge and irrigated agriculture (R2 = 0.7286) and good rangeland (R2 = 0.8548). In conclusion, increasing the area of rain-fed agriculture, good rangeland (type IV), and urban land uses, due to their effects on increasing the runoff, have caused an increase in the water flow of Zanjanroud River.

Author(s):  
Robert A. Zampella ◽  
Nicholas A. Procopio ◽  
Richard G. Lathrop ◽  
Charles L. Dow

Hydrology ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Kinati Chimdessa ◽  
Shoeb Quraishi ◽  
Asfaw Kebede ◽  
Tena Alamirew

In the Didessa river basin, which is found in Ethiopia, the human population number is increasing at an alarming rate. The conversion of forests, shrub and grasslands into cropland has increased in parallel with the population increase. The land use/land cover change (LULCC) that has been undertaken in the river basin combined with climate change may have affected the Didessa river flow and soil loss. Therefore, this study was designed to assess the impact of LULCC on the Didessa river flow and soil loss under historical and future climates. Land use/land cover (LULC) of the years 1986, 2001 and 2015 were independently combined with the historical climate to assess their individual impacts on river flow and soil loss. Further, the impact of future climates under Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5) scenarios on river flow and soil loss was assessed by combining the pathways with the 2015 LULC. A physically based Soil and Water Assessment Tool (SWAT2012) model in the ArcGIS 10.4.1 interface was used to realize the purpose. Results of the study revealed that LULCC that occurred between 1986 and 2015 resulted in increased average sediment yield by 20.9 t ha−1 yr−1. Climate change under RCP2.6, RCP4.5 and RCP8.5 combined with 2015 LULC increased annual average soil losses by 31.3, 50.9 and 83.5 t ha−1 yr−1 compared with the 2015 LULC under historical climate data. It was also found that 13.4%, 47.1% and 87.0% of the total area may experience high soil loss under RCP2.6, RCP4.5 and RCP8.5, respectively. Annual soil losses of five top-priority sub catchments range from 62.8 to 57.7 per hectare. Nash Stuncliffe Simulation efficiency (NSE) and R2 values during model calibration and validation indicated good agreement between observed and simulated values both for flow and sediment yield.


2020 ◽  
Vol 708 ◽  
pp. 135148 ◽  
Author(s):  
Chirayut Chirachawala ◽  
Sangam Shrestha ◽  
Mukand S. Babel ◽  
Salvatore G.P. Virdis ◽  
Supattana Wichakul

2018 ◽  
Vol 4 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Nirmal Kumar ◽  
Sudhir Kumar Singh ◽  
Vikram Gaurav Singh ◽  
Bloodless Dzwairo

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 735 ◽  
Author(s):  
Daniel Dunea ◽  
Petre Bretcan ◽  
Danut Tanislav ◽  
Gheorghe Serban ◽  
Razvan Teodorescu ◽  
...  

The paper reviews the state of water quality in Ialomita River Basin (IRB), Romania, between 2007 and 2018 using the land use/land cover and basin-specific conditions effects on sediments and nutrients load. On-site monitoring was performed in two control sections of the Ialomita River, one in the upper part of the basin (near Targoviste city) and the second near the discharge into the Danube (downstream of Tandarei town). The statistical averages of water parameters for 10 years’ monitoring in the control section that is close to the Ialomita River discharge in Danube were pH = 7.60 (range: 6.41–8.40), NH4-N = 1.20 mg/L (0.02–14.87), alkalinity = 4.12 mmol/L (1.34–6.27), NO3-N = 2.60 mg/L (0.08–17.30), PO4-P = 0.09 mg/L (0–0,31), dissolved oxygen (DO) = 8.87 mg/L (2.72–15.96), BOD5 = 5.50 mg/L (0.01–74.71), suspended solids (TSS) = 508.32 mg/L (15.2–4457), total dissolved salts (TDS) = 733.69 mg/L (455.2–1053), and river discharge = 38.60 m3/s (8.22–165). Expected mean concentration and soil and water assessment tool (SWAT) modeling have been employed in the GIS environment to extend the approach to large spatial patterns within the basin. The estimated average specific emission on the total area for nitrogen was 3.2 kg N/ha, and 0.3 kg P/ha for phosphorus highly influenced by the agricultural activities. The results are useful to raise awareness regarding water-quality degradation and the need to stop and even reverse such trends for local and national sustainable development.


Sign in / Sign up

Export Citation Format

Share Document