scholarly journals Organic matter of sod-podzolic soil after transition to a fallow state

2021 ◽  
Vol 937 (2) ◽  
pp. 022022
Author(s):  
B A Borisov ◽  
O E Efimov ◽  
O V Eliseeva ◽  
T V Tarazanova ◽  
A A Prokhorov

Abstract Soil plays a crucial role in carbon sequestration in terrestrial ecosystems. It is known that the strengthening of carbon sequestration processes occurs with a decrease in the intensity of soil treatments. The study of changes in organic matter and physical properties of sod-podzolic soil 16 years after the transition from arable soils to a fallow state against the background of weak water erosion was carried out. A significant increase in the content and reserves of total carbon in fallow soil compared to arable soil was found, mainly due to carbon of the light fraction. On arable soil, the content of the light fraction in the lower part of the field was significantly higher than in the upper part, due to the washing away of light particles as a result of erosion, these differences were smoothed out on fallow soil. There are no significant changes in the density, density of the solid phase and total porosity in fallow soil at this stage of succession, compared with arable soil. In fallow soil, the content of macro-aggregates (including water-bearing ones) was noticeably higher, and the share of micro-aggregates was lower than in arable soil.

2010 ◽  
Vol 56 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Masayuki Yokozawa ◽  
Yasuhito Shirato ◽  
Toshihiro Sakamoto ◽  
Seiichirou Yonemura ◽  
Makoto Nakai ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Gerrit Angst ◽  
Carsten W. Mueller ◽  
Isabel Prater ◽  
Šárka Angst ◽  
Jan Frouz ◽  
...  

AbstractEarthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO2. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content. We show that much of this microbial carbon is not associated with mineral surfaces and emphasise the functional importance of particulate organic matter for long-term carbon sequestration. Our findings suggest that while earthworms do not necessarily affect soil organic carbon stocks, they do increase the resilience of soil carbon to natural and anthropogenic disturbances. Our results have implications for climate change mitigation and challenge the assumption that mineral-associated organic matter is the only relevant pool for soil carbon sequestration.


2008 ◽  
Vol 2 (No. 1) ◽  
pp. 25-34 ◽  
Author(s):  
J. Sobocká ◽  
J. Balkovič ◽  
M. Lapin

The trends of carbon sequestration behaviour have been estimated for the most fertile soil type of Slovakia based on the prognosticated regional climate change scenario. The processes were modelled and simulated by CENTURY 5 model to provide these inputs: predicted information about quantification of carbon and nitrogen fluxes, and primary net of organic matter production. Soil conditions were represented by the soil type calcareous Haplic Chernozem (Danubian lowland), and the climatic scenario was related to the meteorological station Hurbanovo modelled for the period of 2005&minus;2090. The dynamics of soil carbon and nitrogen was assessed using a conventional cropping system, concretely for 5-years crop rotation winter wheat-maize-oats (feed)-alfalfa-alfalfa modified into two alternatives: with fertilisation and without irrigation (ALT1), and excluding fertilisation and irrigation (ALT2). The model CENTURY 5 provides the simulation of three soil organic matter pools: the active (labile) pool (C<sub>L</sub>), the slow (sequestration) pool (C<sub>S</sub>), and the passive (resistant) pool (C<sub>P</sub>). The results of the model simulation for the conventional crop rotation predict that the supplies of active and slow SOM pools (C<sub>L</sub>, C<sub>S</sub>) do not show any statistically significant decreasing tendency in relation to the expected climate scenario. A moderately linear decreasing trend is expected with the passive SOM pool (C<sub>P</sub>), however, this decreasing tendency is not recognised during total carbon running (C<sub>TOT</sub>). I.e., in the future conventional crop-rotation farming no significant climate change impacts on total carbon sequestration will be presumed. In the case of ALT1, the model shows a gradual but very moderate decrease mainly with CS pool, and in that of ALT2 a significant decreasing trend is recognised with all SOM pools, mainly with CS pool. Amazing is the finding that in the case of non-irrigated but fertilised cropping system (in dry weather), the anticipated significant decrease in carbon sequestration was not observed, however, more drastic changes can be predicted in the non-fertilised and non-irrigated alternative. The average aboveground live carbon and belowground live carbon in both alternative cropping systems in relation to the conventional one have been compared. It was, estimated: in ATL1, that the primary net of organic matter decreased by almost 38% (aboveground live C) and by 43% (belowground live C), and in ALT2 by 43% (aboveground live C) and 45% (belowground live C), respectively. All these findings can be considered as the modelling outputs at the given input data, not as a firmly confirmed prognosis. Nevertheless, the achieved results of CENTURY 5 modelling assume that in the case of sufficient fertilisation and irrigation with well-managed cropping rotation practice under fertile soil conditions of Slovakia, no serious changes in carbon supplies in all SOM pools can be expected.


2017 ◽  
Vol 241 ◽  
pp. 79-87 ◽  
Author(s):  
Dennis Grunwald ◽  
Michael Kaiser ◽  
Simone Junker ◽  
Sven Marhan ◽  
Hans-Peter Piepho ◽  
...  

Author(s):  
K. Avarachen Mathew ◽  
Murat Van Ardelan ◽  
Susana Villa Gonzalez ◽  
Olav Vadstein ◽  
S. Vezhapparambu Veena ◽  
...  

1997 ◽  
Vol 42 (4) ◽  
pp. 229-240 ◽  
Author(s):  
Francis J. Larney ◽  
Eric Bremer ◽  
H.Henry Janzen ◽  
Adrian M. Johnston ◽  
C.Wayne Lindwall

We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


Sign in / Sign up

Export Citation Format

Share Document