scholarly journals Illuminating species diversity of nudibranch in Indonesian coral reef ecosystem using molecular identification

2021 ◽  
Vol 944 (1) ◽  
pp. 012033
Author(s):  
I G W D Dharmawan ◽  
D G Bengen ◽  
I Setyobudiandi ◽  
B Subhan ◽  
I Verawati ◽  
...  

Abstract Nudibranch has high species diversity with complex morphological characters and is challenging to identify at the species level. The lack of knowledge about nudibranchs makes it difficult to identify conventionally using morphological characters. This study aims to identify nudibranchs at the species level using the DNA barcoding method from the mitochondrial cytochrome oxidase 1 (CO1) gen. The results of DNA barcoding using the Cytochrome Oxidase I (COI) gene showed 18 species of 51 samples analyzed. The phylogenetic tree reconstruction revealed 11 main clades belonging to 11 genera. The genetic distance between and within species clearly shows the difference between individuals. Interspecific genetic distance shows the lowest value between species was found between Chromodoris annae and Chromodoris magnifica is 0.075, and the largest genetic distance observed between species Glossodoris rufomarginata and Tritonidae sp is 0.354. This study shows molecular analysis can be used to identify nudibranch up to species level, which will be a source of information in knowing the distribution and the genetic distance.

2018 ◽  
Vol 13 (3) ◽  
pp. 191
Author(s):  
Melta Rini Fahmi ◽  
Erma Primanita Hayuningtyas ◽  
Mochammad Zamroni ◽  
Bastiar Nur ◽  
Shofihar Sinansari

Ikan tiger fish (Datnioides sp.) merupakan ikan hias air tawar yang memiliki nilai ekonomis penting. Distribusi populasi ikan ini meliputi Papua, Kalimantan, dan Sumatera, dengan tingkat eksploitasi yang cukup tinggi di dua lokasi terakhir. Penelitian ini dilakukan untuk mendapatkan informasi keragaman genetik ikan tiger fish yang mendiami perairan Kalimantan dan Sumatera. Sebanyak 24 sampel ikan uji dikoleksi dari Sungai Kapuas, Kalimantan Barat dan Sungai Musi, Sumatera Selatan. Penelitian dilakukan dalam dua tahap, tahap pertama yaitu identifikasi molekuler dengan menggunakan DNA barcoding gen cytochrome oxidase 1 (COI), tahap kedua adalah analisis keragaman genetik dengan menggunakan marka DNA mitokondria gen cytochrome b (Cyt b), dan DNA inti gen recombination activating gene (RAG2). Hasil identifikasi secara molekuler menunjukkan bahwa ikan hasil koleksi memiliki kesamaan genetik sebesar 100% dengan spesies D. undecimradiatus. Keragaman genetik ikan tiger fish antar populasi berkisar pada nilai 0,023 (standar deviasi 0,001) sedangkan keragaman intra populasi adalah sebesar 0,002 dan 0,003 masing-masing untuk populasi Kalimantan dan Sumatera. Jarak genetik sampel baik yang berasal dari Sumatera maupun Kalimantan dengan spesies D. undeciumradiatus masing-masing 0,003 dan 0,006; sedangkan dengan spesies D. microlepis yaitu 0,142. Analisis menggunakan gen RAG2 menunjukkan sampel yang diuji memiliki struktur populasi yang terpisah ditandai dengan terjadinya mutasi pada enam nukleotida dan tiga asam amino.The Tiger fish (Datnioides sp.) is a freshwater ornamental fish that has important economic value. The distribution of this fish included Papua, Kalimantan, and Sumatra, but intensive exploitation occurs in the last two population. This research was conducted to obtain the genetic diversity of tiger fish that inhabited in Kalimantan and Sumatra. A total of 24 fish were collected from Kapuas River, West Kalimantan and Musi River, at Sumatra. The study was conducted in two stages, the first stage is molecular identification of sample by using DNA barcoding cytochrome oxidase 1 (COI) gene, the second stage is analyses of genetic diversity of tiger fish within and between population by using the mitochondrial DNA cytochrome b (Cyt b) gene, and nucleus DNA recombination (RAG2) gene. The molecular identification has shown that the collected fish has a genetic similarity of 100% with D. undecimradiatus. The genetic diversity of tiger fish between populations is 0.023 (standard deviation of 0.001) whereas intra-population is 0.002 and 0.003 for Kalimantan and Sumatra, respectively. The genetic distance of samples with species D. undeciumradiatus were 0.003 and 0.006 for Kalimantan and Sumatera, respectively, whereas the genetic distance with D. microlepis was 0.142. The analysis of mutation on RAG2 gene shows there are six nucleotides and three amino acids have mutation.


2021 ◽  
Vol 15 (2) ◽  
pp. 149-157
Author(s):  
Viktor V. Bolshakov ◽  
Alexander A. Prokin

Chironomus sokolovae Istomina, Kiknadze et Siirin, 1999 (Diptera, Chironomidae) is recorded from Mongolia for the first time. Eleven banding sequences determined in the Mongolian population were previously known from Altai and Yenisei populations: sokA1, sokB1, sokB2, sokC1, sokC2, sokD1, sokD2, sokE1, sokF1, sokF2 and sokG1. The additional B-chromosomes are absent. DNA-barcoding of COI gene was carried out for this species for the first time. The phylogenetic tree estimated by Bayesian inference showed a high similarity of the studied species with Ch. acutiventris Wülker, Ryser et Scholl, 1983 from the Chironomus obtusidens-group. The estimated genetic distance K2P between Ch. sokolovae and Ch. acutiventris is much lower (0.38%) than the commonly accepted threshold of 3% for species of genus Chironomus Meigen, 1803. Our results show that the accepted cytogenetic criteria of species level in the genus Chironomus are more in accordance with morphological ones of the same level, than with molecular-genetic criteria accepted for species COI genetic distance.


2021 ◽  
Vol 14 (1) ◽  
pp. 20-28
Author(s):  
Ismayati Afifah ◽  
Dedy Duryadi Solihin ◽  
Arzyana Sunkar

AbstrakCytochrome Oxidase I (COI) merupakan salah satu gen mitokondria untuk membantu konstruksi dari pohon filogeni yang dapat bertindak sebagai gen marker. Gen COI memiliki keakuratan dalam mengidentifikasi spesies dan umumnya digunakan sebagai “DNA Barcoding”. Informasi mengenai karakteristik genetik berdasarkan DNA mitokondria pada kelelawar di Sukabumi dan Sentul belum banyak dilaporkan. Tujuan dari penelitian ini untuk mengetahui keragaman genetik kelelawar berdasarkan DNA mitokondria dengan penanda Cytochrome Oxidase I (COI) sebagai DNA barcoding. Isolasi DNA total dilakukan menggunakan Kit Dneasy® Blood and Tissue Kit cat no 69504 (50) berdasarkan prosedur Spin-Column Protocol dengan modifikasi. Hasil penelitian ini menunjukkan bahwa gen COI telah berhasil mengidentifikasi karakteristik spesies. Dua haplotipe didapatkan dari masing-masing populasi. Berdasarkan barcode DNA menunjukkan populasi Sukabumi merupakan spesies Chaerephon plicatus dengan nilai identitas genetik sebesar 97,08%, sedangkan populasi Sentul menunjukkan perbedaan secara genetik dengan spesies Hipposideros larvatus dengan nilai identitas genetik sebesar 94,85%. Identifikasi secara genetik dengan menggunakan gen COI menunjukkan bahwa kelelawar yang berasal Sukabumi adalah spesies Chaerephon plicatus dengan jarak genetik sebesar 3,1%. Kelelawar yang berasal dari Sentul memiliki kedekatan dengan spesies Hipposideros larvatus namun memiliki jarak genetik sebesar 5,2%. AbstractCytochrome Oxidase I (COI) is one of the mitochondrial genes to help the construction of phylogeny trees that can act as marker genes. The COI gene has accuracy in identifying species and is commonly used as "DNA Barcoding". Information about genetic characteristics based on mitochondrial DNA in bats in Sukabumi and Sentul has not been widely reported. The purpose of this study was to determine the genetic diversity of bats based on Mitochondrial DNA with Cytochrome Oxidase I (COI) markers as DNA barcoding. Total DNA isolation was carried out using the Dneasy® Blood and Tissue Kit paint no. 69504 (50) based on the Spin-Column Protocol procedure with modifications. The results of this study indicate that the COI gene has successfully identified species characteristics. Two haplotypes were obtained from each population. Based on DNA barcodes, the population of Sukabumi is a species of Chaerephon plicatus with a genetic identity value of 97.08%, while the Sentul population shows genetic differences with the Hipposideros larvatus species with a genetic identity value of 94.85%. Genetic identification using the COI gene shows that the bats originating from Sukabumi is a spesies Chaerephon plicatus with a genetic distance of 3.1%. The bats originating from Sentul are closely related to the species Hipposideros larvatus but have a genetic distance of 5.2%.


2020 ◽  
Vol 21 (10) ◽  
Author(s):  
KUSBIYANTO KUSBIYANTO ◽  
DIAN BHAGAWATI ◽  
Agus Nuryanto

Abstract. Kusbiyanto, Bhagawati D, Nuryanto A. 2020. DNA barcoding of crustacean larvae in Segara Anakan, Cilacap, Central Java, Indonesia using cytochrome c oxidase gene. Biodiversitas 21: 4878-4887. Species-level identification of crustacean larvae is challenging due to morphological constraints. DNA barcoding offers a precise method to solve the problems. That method has never been applied to crustacean larvae from the eastern of Segara Anakan, Cilacap, Central Java, Indonesia. This study aims to identify crustacean larvae in the eastern of Segara Anakan using the cytochrome c oxidase subunit I (COI) gene as a barcode marker. Larvae morphotypes were identified under a binocular microscope. The COI gene was sequenced from one individual of each morphotype. Microscopic observation placed the samples into 15 morphotypes. DNA barcoding placed twelve morphotypes as Crustacea with sequence homologies from 72.21% to 99.21%. Intra-species genetic divergences between samples and reference species ranged between 0.9% and 31.9%, while genetic distance ranged from 0.0% to 17.80%. Intra-species genetic divergences ranged between 0.00% and 3.9%, while genetic distance ranged from 0.00% to 3.8%. The phylogenetic tree proved the monophyly between samples and reference species and showed clear separation among species. All parameters proved that nine morphotypes were identified into species level and were counted for five species. Three morphotypes were identified into the genus level and were counted for three genera. Eight species of crustacean larvae were successfully identified using the cytochrome c oxidase subunit 1 gene.


2021 ◽  
Vol 15 (2) ◽  
pp. 149-157
Author(s):  
Viktor V. Bolshakov ◽  
Alexander A. Prokin

Chironomus sokolovae Istomina, Kiknadze et Siirin, 1999 (Diptera, Chironomidae) is recorded from Mongolia for the first time. Eleven banding sequences determined in the Mongolian population were previously known from Altai and Yenisei populations: sokA1, sokB1, sokB2, sokC1, sokC2, sokD1, sokD2, sokE1, sokF1, sokF2 and sokG1. The additional B-chromosomes are absent. DNA-barcoding of COI gene was carried out for this species for the first time. The phylogenetic tree estimated by Bayesian inference showed a high similarity of the studied species with Ch. acutiventris Wülker, Ryser et Scholl, 1983 from the Chironomus obtusidens-group. The estimated genetic distance K2P between Ch. sokolovae and Ch. acutiventris is much lower (0.38%) than the commonly accepted threshold of 3% for species of genus Chironomus Meigen, 1803. Our results show that the accepted cytogenetic criteria of species level in the genus Chironomus are more in accordance with morphological ones of the same level, than with molecular-genetic criteria accepted for species COI genetic distance.


2020 ◽  
Vol 6 ◽  
pp. 1-4
Author(s):  
Stanislav K Korb

We submitted first results of the DNA studies of the Central Asiatic owlet moths of the genus Euchalcia. Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of six specimens belonging to Euchalcia herrichi and Euchalcia gyulai. We compared the received sequences between discussed species and with two European Euchalcia species (E. variabilis and E. consona). We found no variability within the COI sequences of the samples collected in the same locality (Alai Mts., Kyrgyzstan), whereas the difference in COI sequences between two populations (Ketmen Mts., Kazakhstan and Alai Mts., Kyrgyzstan) was 0.005.


Zootaxa ◽  
2019 ◽  
Vol 4674 (4) ◽  
pp. 426-438
Author(s):  
CHENGLONG CAO ◽  
SIYAO HUANG ◽  
YONGQIANG XU ◽  
HAOMIN WU ◽  
TIANPENG CHEN ◽  
...  

The specimens of the family Hesperiidae collected from Tibet during 2016–2018 are identified using morphology. COI sequences of 76 individuals are newly obtained. The result of our morphological study is congruent with COI gene analyses. Maximum likehood (ML) and Bayesina inferences (BI) analyses reveal that individuals identified morphologically as the same species cluster cohesively. The minimum interspecific genetic distance is 1.7% between Halpe aucma and H. filda, and the genetic distance between conspecific individuals ranged from 0 to 0.2% for the genus Halpe. A total of 51 species are recognized, and six of them, Celaenorrhinus consanguineus Leech, 1891, Barca bicolor (Oberthür, 1896), Aeromachus propinquus Alphéraky, 1897, Pedesta bivitta (Oberthür, 1886), Baoris penicillata chapmani Evans, 1937, and Ochlodes brahma Moore, 1878, are reported from Tibet for the first time, and the last species is new to China. 


2020 ◽  
Vol 20 (9) ◽  
pp. 671-679
Author(s):  
Dutrudi Panprommin ◽  
Kanyanat Soontornprasit ◽  
Siriluck Tuncharoen ◽  
Niti Iamchuen

The species identification of larval fish is very important for sustainable fishery resource management. However, identification based on morphological characters is very difficult, complex and error-prone. DNA barcoding with the sequence of cytochrome c oxidase I (COI) gene was used to identify larval fish species from 10 stations in the tributaries of the lower Ing River. One hundred and six samples were collected between May 2016 and April 2017. The average length of the COI nucleotide sequences was approximately 640 bp. A total of 99 nucleotide sequences were identified in 35 species, 31 genera, 19 families and 9 orders, with 97-100% identity with entries in both the GenBank and BOLD databases. The genetic distance within species ranged from 0.000 to 0.004. However, seven samples were identified at only the genus level because their sequences had not been reported in any databases. Based on IUCN conservation status, most species were classified as least concern (77.14%). Approximately 69.23% of all species were related to human uses in fisheries, aquaculture or aquariums, whereas 30.77% of species were not assessed. Trichopsis vittata (family Osphronemidae) (90%) had the most frequency of occurrence, followed by Oryzias minutillus (family Adrianichthyidae) (70%) and Trichopodus trichopterus (family Osphronemidae) (70%).


2012 ◽  
Vol 60 (3) ◽  
pp. 152 ◽  
Author(s):  
B. D. Cook ◽  
K. M. Abrams ◽  
J. Marshall ◽  
C. N. Perna ◽  
S. Choy ◽  
...  

Recent research suggests that alluvial aquifers in southern and eastern Australia may contain a diverse subterranean aquatic fauna (i.e. stygofauna). However, to date only a limited number of alluvial aquifers have been studied and little molecular data are available to assess species-level diversity and spatial patterns of genetic variation within stygofaunal species. In this paper, we present the initial results of a stygofaunal survey of the Burdekin River alluvial aquifer in Queensland, extending the northern range of alluvial aquifers along the east coast of Australia that have been investigated. The survey resulted in the collection of bathynellid stygofauna (Syncarida: Bathynellacea) and genetic analyses were conducted to determine species level diversity using the mitochondrial cytochrome oxidase subunit I (COI) gene. We further investigated the phylogenetic relationships of the species with bathynellids from western and southern Australia to assess the generic status of species. Four highly divergent COI lineages within the Parabathynellidae and one lineage within the Bathynellidae were found. These lineages did not group within any described genera, and phylogenetic analyses indicated that both local radiations and the retention of a lineage that was more apical in the genealogy account for the diversity within the Parabathynellidae in the Burdekin River alluvial aquifer. Most COI lineages were sampled from only a single bore, although one taxon within the Parabathynellidae was found to be more widespread in the aquifer. Haplotypes within this taxon were not shared among bores (ΦST = 0.603, P < 0.001). Overall, the high species diversity for bathynellaceans from an alluvial aquifer reported here, and surveys of bathynellaceans in several other alluvial systems in south-eastern Australia, suggests that groundwater ecosystems of eastern Australia may contain high stygofaunal diversity by Australian and world standards, particularly at the generic level for parabathynellids.


Jurnal MIPA ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 93
Author(s):  
Thalita C. P. Sumampow

Copepoda merupakan zooplankton kaya manfaat dengan diversitas yang sangat tinggi dan terdiri dari banyak spesies kriptik. Identifikasi cepat, akurat, dan hemat dapat dilakukan dengan menggunakan teknik DNA Barcoding. Kesuksesan teknik tersebut sangat dipengaruhi oleh penggunaan primer yang tepat. Tujuan penelitian ini adalah untuk menguji kemampuan dua pasang primer universal, yakni LCO1490-HCO2198 dan FF2d-FR1d, mengamplifikasi gen COI Copepoda. Dalam penelitian ini, pasangan primer LCO1490-HCO2198 tidak berhasil mengamplifikasi gen target. Sekuens-sekuens hasil amplifikasi menggunakan pasangan primer FF2d-FR1d diidentifikasi melalui BLAST. Hasil yang diperoleh menunjukan bahwa sekuens-sekuens tersebut memiliki persentase kemiripan sebesar 92% dengan bakteri Pandoraea pnomenusa. Melalui hasil yang didapatkan disimpulkan bahwa kedua pasangan primer universal LCO1490-HCO2198 dan FF2d-FR1d tidak cukup spesifik untuk amplifikasi gen cytochrome oxidase I Copepoda.Copepoda is a very beneficial and highly diverse zooplankton with many cryptic species. A fast, reliable, and affordable identification can be done through DNA Barcoding. The success of this technique is affected by the usage of correct primers. The aim of this research was to test the ability of two universal primer pairs, which were LCO1490-HCO2198 and FF2d-FR1d, amplifying COI gene of Copepoda. In this research, LCO1490-HCO2198 primer pairs weren’t able to amplify COI gene of Copepoda. Sequences which were successfully amplified using FF2d-FR1d primer pairs were identified through BLAST. The result shows that the sequences are 92% similar to bacteria named Pandoraea pnomenusa. It can be concluded that both primer pairs are not specific enough to amplify cytochrome oxidase I gene of Copepoda.


Sign in / Sign up

Export Citation Format

Share Document