scholarly journals Primer design of D-loop region for wild population genetics of Rusa timorensis in Indonesia

2021 ◽  
Vol 948 (1) ◽  
pp. 012017
Author(s):  
P Rianti ◽  
A L Hutapea ◽  
D A Rahman ◽  
Y Santosa

Abstract Rusa timorensis (Javan deer) is endemic wildlife in Indonesia and is estimated at less than 10.000 individuals with continuously declining populations due to habitat loss and illegal hunting in the wild. This declining low population indicates a greater risk of extinction. Unfortunately, the genetic information of the wild Javan deer population for conservation management strategies still lacks data due to challenging sampling in the wild. Most recent studies were analysing the breeding populations outside Indonesia. Here, we propose the primer design of the D-loop genetic marker to determine the genetic population of wild Javan deer. We used metadata analysis of genetic sequences and new samples from five wild populations to design the specific primer of the D-loop region of the wild Javan deer in Indonesia. We used software, i.e.., Primer3 to design the primers, BLAST for specificity and Oligo Analyzer™ Tool for efficiency of the primer. The Annealing temperature optimisation started with pre-denaturation at 94 °C followed by 35 cycles of denaturation at 95°C; 51-56°C annealing for each one degree’s different per PCR treatment; and 72°C extensions. We successfully designed a specific primer (RL-3.1a) to amplify 235 bp of the D-loop region at 52°C annealing’s temperature.

2012 ◽  
Vol 60 (5) ◽  
pp. 334 ◽  
Author(s):  
Culum Brown ◽  
Yagiz Aksoy ◽  
Hilal Varinli ◽  
Michael Gillings

The Lake Eacham rainbowfish (Melanotaenia eachamensis) was once thought to be confined to its type locality within the Lake Eacham World Heritage National Park. M. eachamensis disappeared from the lake following the translocation of several species into the lake and the species was pronounced extinct in the wild in 1987. In a 2007 survey we noticed that rainbowfish were present in the lake once again. We used a molecular marker to identify these fish and the likely source population. Analysis of the D-loop region of mitochondrial DNA revealed that the species now present in the lake is Melanotaenia splendida, and is most closely related to several M. splendida populations in the immediate vicinity. Here we explore a range of scenarios that may have led to this colonisation event and highlight the dangers associated with translocation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


2014 ◽  
Vol 76 (11) ◽  
pp. 1451-1456 ◽  
Author(s):  
Masaki TAKASU ◽  
Namiko ISHIHARA ◽  
Teruaki TOZAKI ◽  
Hironaga KAKOI ◽  
Masami MAEDA ◽  
...  

1993 ◽  
Vol 13 (4) ◽  
pp. 2162-2171 ◽  
Author(s):  
C S Madsen ◽  
S C Ghivizzani ◽  
W W Hauswirth

A methylation protection assay was used in a novel manner to demonstrate a specific bovine protein-mitochondrial DNA (mtDNA) interaction within the organelle (in organello). The protected domain, located near the D-loop 3' end, encompasses a conserved termination-associated sequence (TAS) element which is thought to be involved in the regulation of mtDNA synthesis. In vitro footprinting studies using a bovine mitochondrial extract and a series of deleted mtDNA templates identified a approximately 48-kDa protein which binds specifically to a single TAS element also protected within the mitochondrion. Because other TAS-like elements located in close proximity to the protected region did not footprint, protein binding appears to be highly sequence specific. The in organello and in vitro data, together, provide evidence that D-loop formation is likely to be mediated, at least in part, through a trans-acting factor binding to a conserved sequence element located 58 bp upstream of the D-loop 3' end.


2007 ◽  
Vol 176 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Jiuya He ◽  
Chih-Chieh Mao ◽  
Aurelio Reyes ◽  
Hiroshi Sembongi ◽  
Miriam Di Re ◽  
...  

Many copies of mammalian mitochondrial DNA contain a short triple-stranded region, or displacement loop (D-loop), in the major noncoding region. In the 35 years since their discovery, no function has been assigned to mitochondrial D-loops. We purified mitochondrial nucleoprotein complexes from rat liver and identified a previously uncharacterized protein, ATAD3p. Localization studies suggested that human ATAD3 is a component of many, but not all, mitochondrial nucleoids. Gene silencing of ATAD3 by RNA interference altered the structure of mitochondrial nucleoids and led to the dissociation of mitochondrial DNA fragments held together by protein, specifically, ones containing the D-loop region. In vitro, a recombinant fragment of ATAD3p bound to supercoiled DNA molecules that contained a synthetic D-loop, with a marked preference over partially relaxed molecules with a D-loop or supercoiled DNA circles. These results suggest that mitochondrial D-loops serve to recruit ATAD3p for the purpose of forming or segregating mitochondrial nucleoids.


1999 ◽  
Vol 65 (6) ◽  
pp. 1005-1009 ◽  
Author(s):  
Tomoki Ohnaka ◽  
Hiroyuki Sasaki ◽  
Kensho Nagai ◽  
Kenichi Numachi

Sign in / Sign up

Export Citation Format

Share Document