scholarly journals Comparison among variation models of the hydraulic conductivity with the effective porosity in confined aquifer

2021 ◽  
Vol 958 (1) ◽  
pp. 012003
Author(s):  
G F A Brunetti ◽  
A Lauria ◽  
C Fallico

Abstract This paper presents the experimental investigation results from the modalities of variation of the hydraulic conductivity scaling law for a confined aquifer, varying the porous medium that constitutes it. In four subsequent stages, different confined aquifers were built up, each with a different typological configuration of a porous medium. For each of the aquifers considered, various hydraulic conductivity (K) measurements were performed by slug tests. The effective porosity (ne ) was set as a scale parameter, therefore the scaling laws K = K(ne), already determined and reported in previous studies, were taken into consideration for each of the four artificial aquifers considered. The same variation law of K vs ne was also determined by means of some of the well-known empirical and semi-empirical relationships. The latter are based on the particle size distribution and are suitable for application to the porous media considered here, which can be classified as coarse sand. The comparison between the different scaling laws mentioned above allowed us to discuss, through graphical analysis, the reliability of the models considered here. This will facilitate researchers and practitioners working in the field, in the methodological choice of the most appropriate model that should be used for this type of porous media.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1166 ◽  
Author(s):  
Carmine Fallico ◽  
Agostino Lauria ◽  
Francesco Aristodemo

An accurate measurement campaign, carried out on a confined porous aquifer, expressly reproduced in laboratory, allowed the determining of hydraulic conductivity values by performing a series of slug tests. This was done for four porous medium configurations with different granulometric compositions. At the scale considered, intermediate between those of the laboratory and the field, the scalar behaviors of the hydraulic conductivity and the effective porosity was verified, determining the respective scaling laws. Moreover, assuming the effective porosity as scale parameter, the scaling laws of the hydraulic conductivity were determined for the different injection volumes of the slug test, determining a new relationship, valid for coarse-grained porous media. The results obtained allow the influence that the differences among the characteristics of the porous media considered exerted on the scaling laws obtained to be highlighted. Finally, a comparison was made with the results obtained in a previous investigation carried out at the field scale.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Carmine Fallico ◽  
Samuele De Bartolo ◽  
María Fernanda Rivera-Velasquez ◽  
Mario Ianchello

AbstractThe importance of a law that, for an assigned porous medium, gives the variability of the hydraulic conductivity with the effective porosity is well known. Commonly this variability is represented by a power law at different scales, especially those of laboratory and field. Often it can be useful to have a scaling law valid for a single scale range, comprising both those of laboratory and field. Therefore investigation about the reliability of the laws representing the scaling behavior in the various intervals to which reference was made could be suitable.The purpose of this study is to provide evidence about the reliability of the scaling laws for laboratory, field and global (laboratory plus field) scaling ranges, verifying consistency with the expected proportionality between hydraulic conductivity and effective porosity for each of these. This verification was carried out using power-type scaling laws to two and four parameters respectively, and performing suitable moving averages of original data sets, in an attempt to reduce the inevitable measurement uncertainties. The experimental results, obtained with reference to the confined aquifer of Montalto Uffugo test field, show that there are no significant differences between the scaling laws considered and highlight the need to reduce the measurement uncertainties, which weigh heavily on the reliability of scaling laws. Keywords: Scaling law; Hydraulic conductivity; Effective porosity; Laboratory measurement, Field measurement. INFLUENCIA DE LA AMPLITUD DEL INTERVALO DE ESCALA EN LA DETERMINACIÓN DE LA CONDUCTIVIDAD HIDRÁULICA Y LA POROSIDAD EFECTIVA. EL CASO DE UN ACUÍFERO POROSA DEL SUR DE ITALIA La importancia de una ley que, para un dado medio poroso, describa la variabilidad de la conductividad hidráulica en función de la porosidad efectiva es bien conocida. Frecuentemente esta variabilidad está representada por una ley de potencia a diferentes escalas, especialmente las de laboratorio y de campo. A menudo es útil tener una ley de escalamiento válida para un cierto rango de escala incluyendo los de laboratorio y campo. Por esta razón, es oportuno investigar la confiabilidad de las leyes que representan este comportamiento de escalamiento en los diferentes intervalos a los cuales típicamente se hace referencia. El propósito de este estudio es proporcionar evidencia sobre la confiabilidad de las leyes de escalamiento para intervalos de escala válidos para laboratorio, campo y globales (laboratorio + campo), verificando la consistencia con la proporcionalidad esperada entre la conductividad hidráulica y la porosidad efectiva para cada uno de estos. Esta verificación se llevó a cabo utilizando leyes de escalamiento de potencia para dos y cuatro parámetros respectivamente, y tratando de reducir las inevitables incertidumbres de medición. Los resultados experimentales obtenidos con referencia al acuífero confinado del campo de prueba Montalto Uffugo, muestran que no hay diferencias significativas entre las leyes de escalamiento consideradas y se destaca la necesidad de reducir las incertidumbres de medición, las cuales tienen un alto peso sobre la fiabilidad de las leyes de escala. Palabras clave: ley de escalamiento; Conductividad hidráulica; porosidad efectiva; mediciones de laboratorio, medición de campo. 


2007 ◽  
Vol 17 (08) ◽  
pp. 1261-1278
Author(s):  
ELENA COMPARINI ◽  
MAURA UGHI

We consider a one-dimensional incompressible flow through a porous medium undergoing deformations such that the porosity and the hydraulic conductivity can be considered as functions of the flux intensity. We prove that if one approximates the porosity with a constant then the solution of the hyperbolic problem converges to the classical continuous Green–Ampt solution, also in the presence of shocks. In general, however, the shocks remain present in any approximating solution.


Author(s):  
Veronica Fedele ◽  
Nicola Berloco ◽  
Pasquale Colonna ◽  
Ashton Hertrich ◽  
Paolo Intini ◽  
...  

Hydraulic conductivity ( k) is critical for designing permeable pavements for safety and environmental reasons. A novel approach for estimating k is through computational fluid dynamics (CFD) applied to permeable asphalt (PA). Specimens of PA are examined in this study to evaluate CFD applicability. Tortuosity, effective porosity, pore size distribution, and specific surface area were determined based on three-dimensional specimen structures reconstructed using x-ray tomography analyses. Using CFD, estimates of k were determined and compared with physical measurements and also with the results obtained from the semi-empirical modified Kozeny-Carman model (KCM). The comparison shows that the numerical simulations with CFD can be a reasonable tool for estimating k and for examining transport of water through PA. Within the constraints of this study, results infer that CFD can provide more representative results for low k in comparison with KCM. For higher k, CFD and KCM results were reasonably comparable.


2014 ◽  
Vol 6 (1) ◽  
pp. 1024-1031
Author(s):  
R R Yadav ◽  
Gulrana Gulrana ◽  
Dilip Kumar Jaiswal

The present paper has been focused mainly towards understanding of the various parameters affecting the transport of conservative solutes in horizontally semi-infinite porous media. A model is presented for simulating one-dimensional transport of solute considering the porous medium to be homogeneous, isotropic and adsorbing nature under the influence of periodic seepage velocity. Initially the porous domain is not solute free. The solute is initially introduced from a sinusoidal point source. The transport equation is solved analytically by using Laplace Transformation Technique. Alternate as an illustration; solutions for the present problem are illustrated by numerical examples and graphs.


Author(s):  
Swayamdipta Bhaduri ◽  
Pankaj Sahu ◽  
Siddhartha Das ◽  
Aloke Kumar ◽  
Sushanta K. Mitra

The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.


Author(s):  
Guglielmo Federico Antonio Brunetti ◽  
Samuele De Bartolo ◽  
Carmine Fallico ◽  
Ferdinando Frega ◽  
Maria Fernanda Rivera Velásquez ◽  
...  

AbstractThe spatial variability of the aquifers' hydraulic properties can be satisfactorily described by means of scaling laws. The latter enable one to relate the small (typically laboratory) scale to the larger (typically formation/regional) ones, therefore leading de facto to an upscaling procedure. In the present study, we are concerned with the spatial variability of the hydraulic conductivity K into a strongly heterogeneous porous formation. A strategy, allowing one to identify correctly the single/multiple scaling of K, is applied for the first time to a large caisson, where the medium was packed. In particular, we show how to identify the various scaling ranges with special emphasis on the determination of the related cut-off limits. Finally, we illustrate how the heterogeneity enhances with the increasing scale of observation, by identifying the proper law accounting for the transition from the laboratory to the field scale. Results of the present study are of paramount utility for the proper design of pumping tests in formations where the degree of spatial variability of the hydraulic conductivity does not allow regarding them as “weakly heterogeneous”, as well as for the study of dispersion mechanisms.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


Sign in / Sign up

Export Citation Format

Share Document