scholarly journals Nonlinear analysis of constructions from different materials based on unified plastic constitutive relations

Author(s):  
Mark Panasyuk ◽  
Aleksandr Petrakov ◽  
Natalia Petrakova
2014 ◽  
Vol 7 (5) ◽  
pp. 879-904 ◽  
Author(s):  
E. Parente Jr ◽  
G. V. Nogueira ◽  
M. Meireles Neto ◽  
L. S. Moreira

The analysis of reinforced concrete structures until failure requires the consideration of geometric and material nonlinearities. However, nonlinear analysis is much more complex and costly than linear analysis. In order to obtain a computationally efficient approach to nonlinear analysis of reinforced concrete structures, this work presents the formulation of a nonlinear plane frame element. Geometric nonlinearity is considered using the co-rotational approach and material nonlinearity is included using appropriate constitutive relations for concrete and steel. The integration of stress resultants and tangent constitutive matrix is carried out by the automatic subdivision of the cross-section and the application of the Gauss quadrature in each subdivision. The formulation and computational implementation are validated using experimental results available in the literature. Excellent results were obtained.


2007 ◽  
Vol 51 (03) ◽  
pp. 250-258 ◽  
Author(s):  
M. A. Vaz ◽  
C. A. D. de Lemos ◽  
M. Caire

Bend stiffeners are polymeric structures with a conical shape designed to limit the curvature of flexible risers and umbilical cables at their uppermost connections, protecting them against overbending and from accumulation of fatigue damage. Thus, they are of vital importance to deep water oil and gas production systems. This work develops a mathematical formulation and a numerical solution procedure for the geometrical and material nonlinear analysis of the riser/bend stiffener system considered as a beam bending model. The structures are separately modeled, which allows the numerical calculation of the contact force along the system arc length. The governing differential equations are derived considering geometrical compatibility, equilibrium of forces and moments, and nonlinear asymmetric material constitutive relations, which leads to a shift in the neutral axis position from the cross-section centroid. The eccentricity and the bending moment versus curvature relation for each cross section are numerically calculated and then expressed by a polynomial power series expansion. A set of four first-order nonlinear ordinary differential equations is written and four boundary conditions are specified at both ends. Once the global problem is solved, the contact force may be promptly calculated. A finite difference method is implemented in Fortran code to obtain the numerical solution. A case study is carried out where linear elastic symmetric and nonlinear elastic asymmetric constitutive models are compared and discussed. The results are presented for the riser/bend stiffener deflected configuration, angle, curvature, and contact force distribution. The results demonstrate that an accurate structural analysis of bend stiffeners depends on a precise assessment of the nonlinear asymmetric polyurethane property.


2012 ◽  
Vol 446-449 ◽  
pp. 498-501
Author(s):  
Jie Bai ◽  
Guo Bai

On the basis of previous experimental research, the nonlinear finite element analysis of the out-of-plane beam-wall joint is made with nonlinear bond-slip constitutive relations between steel and concrete. The force mechanism of concealed beam in the joint is studied in detail, and parametric analysis is carried out for height of concealed beam. Results of experiment and nonlinear analysis proved that: concealed beam is the important guarantee for mechanical behavior of the out-of-plane beam-wall joint. In addition, the torsional capacity and height of concealed beam are the main factors influencing on moment transfer behavior of the joint.


Sign in / Sign up

Export Citation Format

Share Document