scholarly journals Investigation of geotechnical properties of soil samples in Isu-Njaba Imo State

2021 ◽  
Vol 1036 (1) ◽  
pp. 012035
Author(s):  
A C Ekeleme ◽  
O H Ibearugbulem ◽  
E I Ugwu ◽  
C E Njoku ◽  
E C Amanamba ◽  
...  
2011 ◽  
Vol 3 (5) ◽  
pp. 37-42
Author(s):  
Renata Mikalauskienė ◽  
Donatas Butkus ◽  
Ingrida Pliopaitė Bataitienė

The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Csand 40K transfer in the system “soil-plant”. Santrauka Straipsnyje nagrinėjama gamtinės (40K) ir dirbtinės (137Cs) kilmės radionuklidų savitųjų aktyvumų ir jų santykio kaita skirtinguose Lietuvos teritorijos dirvožemiuose. Dirvožemio mėginiai parinkti iš vietovių, kurios buvo labiau užterštos po Černobylio atominės elektrinės avarijos ir buvusių branduolinių bandymų. Tyrimo metu nustatytos pagrindinės fizinės cheminės dirvožemio savybės ir jų poveikis 40K aktyvumų koncentracijai. 137Csir 40K savitieji aktyvumai dirvožemyje tirti esant sausam mėginio svoriui. 137Cs savitieji aktyvumai sausame dirvožemyje svyravo nuo 1,1±1,0 iki 14,3±0,9 Bq/kg, o 40K savitieji aktyvumai – nuo 326±29 iki 740±15 Bq/kg. 137Csir 40K savitųjų aktyvumų santykis skirtingų vietovių dirvožemiuose kito nuo 0,0034 iki 0,0240 Bq/kg. Tyrimo rezultatai gali būti panaudoti, nustatant ir įvertinant 137Csir 40K pernašą sistemoje dirvožemis–augalai.


Expansive soils are problematic soils for Civil Engineers. Black cotton (BC) soils possess low strength and high compressibility, due to these properties black cotton soils are considered to be challenging one for analysis. To achieve desired properties of soil for construction purpose these black cotton soil must be enhanced to meet its requirement. To modify the properties of black cotton soils, many treatment methods are there. In this paper an attempt has been made to improve the properties of black cotton soil by using industrial waste through stabilization method. By stabilizing the soil properties are enhanced and make it suitable for subgrade construction. In this work, the combined effect of Lime and Phosphogypsum (PG) on compaction characteristics, Atterberg’s Limit, Unconfined Compressive Strength (UCS) for original soil, California Bearing Ratio (CBR) and direct shear Test of a black cotton soil with percentage varying of Lime and Phosphogypsum was carried out. The soil samples were tested for tri-axial compression test and CBR tests were carried out after 4 days curing period. From the results, it has been inferred that the black cotton soil treated with Lime and Phosphogypsum in the percentages of (4:4) has better strength characteristics. Hence, it may be concluded that Lime and Phosphogypsum can be used for stabilization of black cotton soils for pavement subgrade


2011 ◽  
Vol 57 (No. 5) ◽  
pp. 185-191
Author(s):  
A. Kučera ◽  
K. Rejšek ◽  
P. Dundek ◽  
K. Marosz ◽  
P. Samec ◽  
...  

ABSTRACT: This paper deals with a specific type of homogeneous beechwood called Fageta paupera. The aim is to acquire information about the heterogeneity of soil environment. As a material we used 20 research plots of semi-natural European beech stands, where the sampling of soil profile and the observation of floristic conditions were realized. Laboratory assessment of soil samples was focused on physicochemical and chemical properties of soil: pH/CaCl<sub>2</sub>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, CEC (T, S, V), C<sub>ox</sub>, N<sub>t</sub>, C/N, C-FA, C-HA, C-CHL, C-HA/FA. Data processing was done with the aim to discover a variability of soils, observing soil genetic horizons individually (H, A, B, C). Research plots were divided into biotopes with the cover of understory vegetation &lt; 15% and &gt; 15% (in accordance with the definition of Fageta paupera) and the variability of soil properties in each horizon for the two above-mentioned biotopes and furthermore for all plots together was investigated. Results show the highest variability of soil properties in the biotope of Fageta paupera, especially in its holorganic (H) and organomineral (A) horizons. Furthermore, regression analysis showed the strongest dependence of the variability of soil properties in the biotope of Fageta paupera.


Author(s):  
Rafał STRACHEL ◽  
Jadwiga WYSZKOWSKA ◽  
Małgorzata BAĆMAGA

The aim of these studies was to determine the influence of excessive zinc doses on the microbiological and enzymatic properties of soil. Also, an evaluation of the possibility to stimulate remediation processes by nitrogen fertilisation of the soil was attempted. Zinc was applied to loamy sand in the amounts of 0, 250, 500, 750, 1000, 1250 mg Zn2+ kg–1 DM soil, while nitrogen in the form of urea in doses of 0, 250, 500 mg N kg–1 DM soil. Soil samples were incubated at a temperature of 25 °C, maintaining a constant humidity equal to 50% of the maximum water capacity. In the 2nd and 20th week of the experiment, the following factors were determined: activity of dehydrogenases and catalase, and number of organotrophic bacteria, copiotrophic bacteria, oligotrophic bacteria, actinomycetes, and fungi. Zinc inhibited the enzymatic activity of the soil, while causing a slight increase in populations of microorganisms. Only fungi reacted unequivocally positively to contamination of the soil with zinc, therefore demonstrating changes in the biodiversity of microorganisms. Nitrogen fertilisation of the soil resulted in stabilization of the environment contaminated with zinc by stimulation of growth of microorganisms resistant to the influence of this metal.


Sign in / Sign up

Export Citation Format

Share Document