scholarly journals Control of rotation speed using angle change or effective cross-sectional area of blades on wind turbines

2021 ◽  
Vol 1073 (1) ◽  
pp. 012078
Author(s):  
Y Yulianto ◽  
A Pracoyo ◽  
B Priyadi
2021 ◽  
Author(s):  
◽  
Norberto Fernando Soares Sanjimba

The volatility of fossil fuel's price, pollution, and emission associated with converting fos- sil fuel into a useful type of energy led man to search for more sustainable energy sources that are pollution-free and renewable. Today, renewable energy technologies, such as solar and large wind turbines, are developed to a stage of maturity, having the cost of produc- ing electricity dropping signi􏰀cantly in the last decade, therefore making these technologies competitive with the traditional counterpart. The cost of producing electricity through small wind turbines is still high compared to large wind turbines or photovoltaic technology. For small wind turbines to successfully compete with other technologies and contribute to the diversi􏰀cation of o􏰈-grid technology, further research is needed to reduce the levelised cost of energy (LCOE). Therefore, this study aims to reduce the levelised cost of energy (LCOE) of small wind turbines. To achieve the ob- jective, a 10 kW wind turbine operating at a site of an average wind speed of 7.5 m/s was designed, optimized, and simulated. With low LCOE in mind, the turbine components were designed as simple as possible to reduce manufacturing costs. The blades are made of uniform cross-sectional area, which made possible to use aluminum as the blade material, and the blade cross-sectional area is made out of a high lift airfoil. The hub is made of aluminum and modelled and designed as a disc with holes to bolt the blades and attach the main shaft. The mainframe is treated as a thick plate with a proper arrangement to connect the generator, the main and yaw bearings, the tail support, and any other ancillaries needed. An octal tapered tower with a height of 20 m made of steel was designed and optimized for low weight. The electrical power is to be produced by a direct drive variable speed permanent magnet synchronous generator. The control system is designed in such a way that allows the turbine to operate in maximum power e􏰊ciency for any speed below the rated speed, and to increase reliability, a sensorless control system is suggested. The research started with a broad review of the relevant literature on wind turbines in general and small wind turbines. The turbine blades design began by analysing the aero- dynamic performance of the blade. To accomplish that, XFoil was used to generate the aerodynamic parameters of the airfoil, the Blade Element Momentum (BEM) method was used to estimate the blades' aerodynamic performance, and Qblade was employed to com- pare the results, and Computational Fluid Dynamics (CFD) was used to verify the results. The preliminary design was done using standard IEC 61400-2 to obtain the load cases, and general engineering formulas, CFD and Finite Element Analysis (FEA) was used to analyse the load in the components according to IEC 61400-2, FAST-V7 was used to simulate the turbine's overall performance, standard formulas were used to evaluate the economic perfor- mance of the design, MatLab was used to perform all needed calculations. In this study, it is evident that using standard IEC 61400-2 to estimate the load, gyroscopic load components dominate the design, and the control system must be used to limit those loads. The designed turbine has relatively high e􏰊ciency and low LCOE.


1994 ◽  
Vol 07 (03) ◽  
pp. 110-113 ◽  
Author(s):  
D. L. Holmberg ◽  
M. B. Hurtig ◽  
H. R. Sukhiani

SummaryDuring a triple pelvic osteotomy, rotation of the free acetabular segment causes the pubic remnant on the acetabulum to rotate into the pelvic canal. The resulting narrowing may cause complications by impingement on the organs within the pelvic canal. Triple pelvic osteotomies were performed on ten cadaver pelves with pubic remnants equal to 0, 25, and 50% of the hemi-pubic length and angles of acetabular rotation of 20, 30, and 40 degrees. All combinations of pubic remnant lengths and angles of acetabular rotation caused a significant reduction in pelvic canal-width and cross-sectional area, when compared to the inact pelvis. Zero, 25, and 50% pubic remnants result in 15, 35, and 50% reductions in pelvic canal width respectively. Overrotation of the acetabulum should be avoided and the pubic remnant on the acetabular segment should be minimized to reduce postoperative complications due to pelvic canal narrowing.When performing triple pelvic osteotomies, the length of the pubic remnant on the acetabular segment and the angle of acetabular rotation both significantly narrow the pelvic canal. To reduce post-operative complications, due to narrowing of the pelvic canal, overrotation of the acetabulum should be avoided and the length of the pubic remnant should be minimized.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


Author(s):  
S.Sh. Gammadaeva ◽  
M.I. Misirkhanova ◽  
A.Yu. Drobyshev

The study analyzed the functional parameters of nasal breathing, linear parameters of the nasal aperture, nasal cavity and nasopharynx, volumetric parameters of the upper airways in patients with II and III skeletal class of jaw anomalies before and after orthognathic surgery. The respiratory function of the nose was assessed using a rhinomanometric complex. According to rhinoresistometry data, nasal resistance and hydraulic diameter were assessed. According to the data of acoustic rhinometry, the minimum cross-sectional area along the internal valve, the minimum cross-sectional area on the head of the inferior turbinate and nasal septum and related parameters were estimated. According to the CBCT data, the state of the nasal septum, the inferior turbinates, the nasal aperture, the state of the nasal cavity, and the linear values of the upper respiratory tract (nasopharynx) were analyzed. The patients were divided into 4 groups according to the classification of the patency of the nasal passages by


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
R. C. BHARATI

Data on fruit count corresponding to primary, secondary and tertiary branches of a randomly selected guava CV. Allahabad Safeda were recorded from the guava orchard of Horticultural Research Station, Birauli. The proposed sampling scheme in which the selection probabilities are based on length of braches between two forking points was compared with equal probability(PE), probability proportional to the number of branches(PPN), probability proportional to the cross sectional area (PPA) and probability proportional to volume (PPV) method of sampling and found to be more efficient.


2006 ◽  
Vol 7 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Myoung-Ae Choe ◽  
Gyeong Ju An ◽  
Yoon-Kyong Lee ◽  
Ji Hye Im ◽  
Smi Choi-Kwon ◽  
...  

This study examined the effects of daily low-intensity exercise following acute stroke on mass, Type I and II fiber cross-sectional area, and myofibrillar protein content of hind-limb muscles in a rat model. Adult male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 7-9 per group): stroke (occlusion of the right middle cerebral artery [RMCA]), control (sham RMCA procedure), exercise, and stroke-exercise. Beginning 48 hours post-stroke induction/sham operation, rats in the exercise group had 6 sessions of exercise in which they ran on a treadmill at grade 10 for 20 min/day at 10 m/min. At 8 days poststroke, all rats were anesthetized and soleus, plantaris, and gastrocnemius muscles were dissected from both the affected and unaffected sides. After 6 sessions of exercise following acute ischemic stroke, the stroke-exercise group showed the following significant (p < .05) increases compared to the stroke-only group: body weight and dietary intake, muscle weight of affected soleus and both affected and unaffected gastrocnemius muscle, Type I fiber cross-sectional area of affected soleus and both affected and unaffected gastrocnemius muscle, Type II fiber cross-sectional area of the unaffected soleus, both affected and unaffected plantaris and gastrocnemius muscle, Type II fiber distribution of affected gastrocnemius muscle, and myofibrillar protein content of both affected and unaffected soleus muscle. Daily low-intensity exercise following acute stroke attenuates hind-limb muscle atrophy in both affected and unaffected sides. The effects of exercise are more pronounced in the soleus and gastrocnemius as compared to the plantaris muscle.


Author(s):  
D. Kinose ◽  
E. Ogawa ◽  
Y. Matsuo ◽  
W. Shigemori ◽  
Y. Uchida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document