scholarly journals Some approaches for residual porosity estimating

2021 ◽  
Vol 1093 (1) ◽  
pp. 012015
Author(s):  
D Yu Kosyanov ◽  
A P Zavjalov ◽  
A A Vornovskikh ◽  
A M Zakharenko ◽  
X Liu ◽  
...  
Keyword(s):  
2021 ◽  
pp. 004051752110238
Author(s):  
Oluwafemi P Akinmolayan ◽  
James M Manimala

Silica nanoparticle-impregnated Kevlar (SNK) fabric has better specific ballistic performance in comparison to its neat counterparts. For multifunctional structural applications using lightweight composites, combining this improved ballistic functionality with an acoustic functionality is desirable. In this study, acoustic characterization of neat and SNK samples is conducted using the normal-incidence impedance tube method. Both the absorption coefficient and transmission loss (TL) are measured in the 60–6000 Hz frequency range. The influence of parameters such as number of layers of neat or treated fabric, percentage by weight of nanoparticle addition, spacing between fabric layers, and residual porosity is examined. It is found that while absorption decreases with an increase in nanoparticle addition for frequencies above about 2500 Hz, increasing the number of layers shifts peak absorption to lower frequencies. By introducing an air-gap behind the fabric layer, dominant low-frequency (1000–3000 Hz) absorption peaks are obtained that correlate well with natural modes of mass-equivalent thin plates. Examining the influence of residual porosity by laminating the SNK samples reveals that it contributes to about 30–50% of the total absorption. Above about 1500 Hz, 3–5 dB of TL increase is obtained for SNK samples vis-à-vis the neat samples. TL is found to increase beyond that of the neat sample above a threshold frequency when an air-gap is introduced between two SNK layers. With an increase in the weight of nanoparticle addition, measured TL tends to be closer to mass law predictions. This study demonstrates that SNK fabric could provide improved acoustic performance in addition to its ballistic capabilities, making it suitable for multifunctional applications and could form the basis for the development of simplified models to predict the structural acoustic response of such nanoparticle–fabric composites.


1963 ◽  
Vol 6 (12) ◽  
pp. 94-107 ◽  
Author(s):  
D. T. LIVEY ◽  
A. W. HEY ◽  
J. S. O’NEILL

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040031
Author(s):  
Stella Raynova ◽  
Khaled Alsharedah ◽  
Fei Yang ◽  
Leandro Bolzoni

A powder metallurgy approach was applied for the synthesis of an [Formula: see text] Ti-2Al-3Fe alloy. Blends of the elemental Ti, Al and Fe powders were compacted and subsequently sintered. High-frequency induction heating (HFIH) instead of conventional high-vacuum furnace heating was used for the sintering, due to its high efficiency. The effect of temperature on the level of densification, residual porosity and mechanical properties was studied. Electron dispersive spectrum analysis was used to study the dissolution and homogenization of the alloying elements. The results showed that a short induction sintering (IS) cycle in the range of 10–15 min is sufficient to achieve significant powder consolidation, evident by the increase of the density and mechanical properties. The residual porosity diminishes with the increase of the sintering temperature. Full dissolution of the alloying powders is completed after sintering at temperatures above those of [Formula: see text]- to [Formula: see text]-phase transformation.


1974 ◽  
Vol 13 (8) ◽  
pp. 670-673 ◽  
Author(s):  
N. I. Romanova ◽  
G. S. Kreimer ◽  
V. I. Tumanov

1963 ◽  
Vol 6 (12) ◽  
pp. 1-16 ◽  
Author(s):  
G. C. KUCZYNSKI

1978 ◽  
Vol 8 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Paul R. Blankenhorn ◽  
Douglas P. Barnes ◽  
Donald E. Kline ◽  
Philip D. Cady

Author(s):  
Sergey Grigoriev ◽  
Roman Khmyrov ◽  
Mikhail Gridnev ◽  
Tatiana Tarasova ◽  
Andrey Gusarov

Abstract Additive manufacturing by selective laser melting (SLM) is generally applicable to glasses while insufficient resistance of the material to thermal shocks due to local laser heating may result in cracking and a high viscosity of glass melt is responsible for incomplete powder consolidation related to residual porosity. The present work shows that preheating up to 350 °C is sufficient to avoid cracking of soda-lime glass. Preheating of quartz glass up to 730 °C considerably decreases the residual porosity, which is explained by acceleration of powder consolidation by the viscous-flow mechanism of glass particles' coalescence. Variation of the preheating temperature is an effective tool to control consolidation of glass powder and to avoid cracking.


Sign in / Sign up

Export Citation Format

Share Document