scholarly journals Mechanical Properties of Acrylic Laminations Resin (PMMA) Reinforced by Natural Nanoparticles and Hemp Fibers

2021 ◽  
Vol 1094 (1) ◽  
pp. 012136
Author(s):  
S H Ahmed ◽  
W M Salih
2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2021 ◽  
Vol 888 ◽  
pp. 15-21
Author(s):  
Ivelina Ivanova ◽  
Jules Assih ◽  
Dimitar Dontchev

This research aims at studying the mechanical properties of industrial hemp fibers and promoting their use as a reinforcing composite material for strengthening of civil engineering structures. Natural hemp fibers are of great interest due to the following advantages they have: low cost, high strength-to-weight ratio, low density and non-corrosive properties. The use of plant fiber composite materials has increased significantly in recent years because of the negative reduction impact on the environment. For example, the tendency to use renewable resources and their possibility for recycling. They cause fewer health and environmental problems than synthetic fibers. Natural fibers, in addition to environmental aspects, have advantages such as low densities, i.e. have low weight, interesting mechanical properties comparable to those of synthetic fiber materials, and last but not least, low cost. Composites based on natural plant fibers can be used to reinforce or repair reinforced concrete structures, as shown by research on flax fiber composites. These concretes specimens strengthened with biocomposite materials have very good resistance to bending and significantly increase the rigidity of the structure. The results show that the hemp fiber reinforcement has significant effects on the strengthening and increase in flexural strength from 8% to 35 %.


2007 ◽  
Vol 105 (1) ◽  
pp. 255-268 ◽  
Author(s):  
Robert Masirek ◽  
Zbigniew Kulinski ◽  
Donatella Chionna ◽  
Ewa Piorkowska ◽  
Mariano Pracella

2002 ◽  
Vol 2002 (0) ◽  
pp. 345-346 ◽  
Author(s):  
Shinji OCHI ◽  
Hitoshi TAKAGI ◽  
Hiroaki MISAWA ◽  
Hideyuki TANAKA

Author(s):  
Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  
...  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.


Sign in / Sign up

Export Citation Format

Share Document