scholarly journals Fuzzy Logic based Digital Hydraulics Control of Blade Pitch Angle in Wind Turbines

2021 ◽  
Vol 1123 (1) ◽  
pp. 012019
Author(s):  
V. Lakshmi Narayanan ◽  
R. Ramakrishnan
2021 ◽  
pp. 014459872110417
Author(s):  
Ya-Jun Fan ◽  
Hai-tong Xu ◽  
Zhao-Yu He

Wind energy has been developed and is widely used as a clean and renewable form of energy. Among the existing variety of wind turbines, variable-speed variable-pitch wind turbines have become popular owing to their variable output power capability. In this study, a hybrid control strategy is proposed to implement pitch angle control. A new nonlinear hybrid control approach based on the Adaptive Neuro-Fuzzy Inference System and fuzzy logic control is proposed to regulate the pitch angle and maintain the captured mechanical energy at the rated value. In the controller, the reference value of the pitch angle is predicted by the Adaptive Neuro-Fuzzy Inference System according to the wind speed and the blade tip speed ratio. A proposed fuzzy logic controller provides feedback based on the captured power to modify the pitch angle in real time. The effectiveness of the proposed hybrid pitch angle control method was verified on a 5 MW offshore wind turbine under two different wind conditions using MATLAB/Simulink. The simulation results showed that fluctuations in rotor speed were dramatically mitigated, and the captured mechanical power was always near the rated value as compared with the performance when using the Adaptive Neuro-Fuzzy Inference System alone. The variation rate of power was 0.18% when the proposed controller was employed, whereas it was 2.93% when only an Adaptive Neuro-Fuzzy Inference System was used.


Author(s):  
Sandeep Christy R ◽  
◽  
Kousik S C ◽  
Vishal Subramaniam R ◽  
Santhosh Ram R ◽  
...  

Vertical Axis Wind Turbines (VAWTs) are mostly manufactured keeping in mind the site and conditions that the wind turbine would face. There is a need to know which type of VAWT would be optimal in the conditions present at the installation site. The major factors involved are blade profile, wind velocity and blade pitch angle. This study is undertaken to study these factors and their effects on influencing the efficiency of the VAWT. A model has been made of a Darrieus VAWT with H-rotor design and is analyzed using CFD. An Iso-surface mesh is made on the model with a cylindrical air-filled domain and a κ-ε turbulence model is applied to study the effects of the wind-and-turbine blade interaction. The domain inlet indicates wind velocity; outlet is set to zero atmospheric gauge pressure and the pressure distribution across the turbine blade wall is measured. The top bottom walls of the domain are not part of the interaction. The study shows that the NACA0012 blade profile fares better than the other profiles across the range of wind velocities. However, it is less efficient with an increase in blade pitch angle for the same value of velocity. NACA0015 blade profile gives good performance when it has a zero pitch angle for intermediate and high wind velocities.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1337
Author(s):  
Ibrahim El-Fahham ◽  
George Abdelshahid ◽  
Ossama Mokhiamar

The aim of this research work is to modulate the pitch angle of both types of wind turbines based on fuzzy logic control (FLC), as changes in the pitch angle have various functions in horizontal and vertical axis wind turbines. For HAWT, pitch angle control is applied to shield the electrical components of the turbine when the wind speed exceeds the rated speed without shutting down the turbine. FLC is used to control the angular velocity using two inputs and one output with three membership functions for both inputs and output. In VAWT, pitch angle control is applied to boost the performance of the turbine and its self-starting torque. FLC utilizes two inputs and one output with five membership functions for both inputs and output. For both turbine types, FLC produces a control signal that drives the actuator to achieve the desired pitch angle. The dynamics of HAWT and VAWT are simulated by the MATLAB/Simulink to demonstrate the influence of pitch controls on their dynamics. For HAWT, the FLC control has successfully maintained the angular speed of the rotor. The values of tip speed ratio and coefficient of performance are reduced in order to maintain the rotor angular velocity at its rated value. On the other hand, the results showed that the torque produced by the VAWT individual blade has improved with the pitch angle control. In addition, using FLC to control the pitch angle gives enhanced output and higher Cp at low tip speed ratios. Gain schedule PI controller is also used in both HAWT and VAWT for comparative study.


Author(s):  
Mahmoud Etemaddar ◽  
Elaheh Vahidian ◽  
Otto Skjåstad

The safety and reliability margin of offshore floating wind turbines need to be higher than that of onshore wind turbines due to larger environmental loads and higher operational and maintenance costs for offshore wind turbines compared to onshore wind turbines. However rotor cyclic loads coupled with 6 DOFs motions of the substructure, amplifies the fatigue damage in offshore floating wind turbines. In general a lower fatigue design factor is used for offshore wind turbines compared to that of the stationary oil and gas platforms. This is because the consequence of a failure in offshore wind turbines in general is lower than that of the offshore oil and gas platforms. In offshore floating wind turbines a sub-system fault in the electrical system and blade pitch angle controller also induces additional fatigue loading on the wind turbine structure. In this paper effect of selected controller system faults on the fatigue damage of an offshore floating wind turbine is investigated, in a case which fault is not detected by a fault detection system due to a failure in the fault detection system or operator decided to continue operation under fault condition. Two fault cases in the blade pitch angle controller of the NREL 5MW offshore floating wind turbine are modeled and simulated. These faults include: bias error in the blade pitch angle rotary encoder and valve blockage or line disconnection in the blade pitch angle actuator. The short-term fatigue damage due to these faults on the composite blade root, steel low-speed shaft, tower bottom and hub are calculated and compared with the fatigue damage under normal operational conditions considering same environmental conditions for both cases. This comparison shows that how risky is to work under the fault conditions which could be useful for wind turbine operators. The servo-hydro-aeroelastic code HAWC2 is used to simulate the time domain responses of the spar-type offshore floating wind turbine under normal and faulty operational conditions. The rain-flow cycle counting method is used to calculate the load cycles under normal operational and fault conditions. The short term fatigue damage to the composite blade root and steel structures are calculated for 6-hour reference period. The bi-linear Goodman diagram and a linear SN curve are used to estimate the fatigue damage to the composite blade root and the steel structures respectively. Moreover the fatigue damage for different mean wind speeds, sea states and fault amplitudes are calculated to figure out the region of wind speeds operation with the highest risk of damage.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Ghada Adel Aziz

Abstract       The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineering and renewable energy concepts.      A comparison was done to access the functionality of  the developed power control system of fuzzy logic and classical control system with PID – control. It can be concluded that the power control system of fuzzy logic allows to accurately maintain production under the control target function for each work area. When switching operation of wind turbines, it has the distinction that from 13.5 m/s  to another wind velocity value, there is no overshoot  and a typical of classical control systems, and when the wind velocity V is less than13.5 m / s, the pitch angle of the blades should be slightly greater than zero, and if it has increased by 5 °, then blade length should be minimal as possible. Simulation program proved the possibility of effective power regulation for the large wind turbines controller fuzzy type on the basis of knowledge production "if - then" rules, which were shown to be effective on these wind turbines control.  Keywords: Mamdani and Larsen algorithms fuzzy inference, Matlab Fuzzy Logic ,Fuzzy-PID controllers, Wind turbine.


2021 ◽  
Author(s):  
Matthias Saathoff ◽  
Malo Rosemeier ◽  
Thorsten Kleinselbeck ◽  
Bente Rathmann

Abstract. An empirical data set of laser-optical pitch angle misalignment measurements on wind turbines was analyzed, and showed that 38 % of the turbines have been operating outside the accepted aerodynamic imbalance range. This imbalance results from deviations between the working pitch angle and the design angle set point. Several studies have focused on the consequences of this imbalance for the annual energy production (AEP) loss and mention a possible decrease in fatigue budget, i.e., remaining useful life (RUL). This research, however, quantifies the effect of the individual blade pitch angle misalignment and the resulting aerodynamic imbalance on the RUL of a wind turbine. To this end, several imbalance scenarios were derived from the empirical data representing various individual pitch misalignment configurations of the three blades. As the use case, a commercial 1.5 MW turbine was investigated which provided a good representation of the sites and the turbine types in the empirical data set. Aeroelastic load simulations were conducted to determine the RUL of the turbine components. It was found that the RUL decreased in most scenarios, while the non-rotating wind turbine components were affected most by an aerodynamic imbalance.


Sign in / Sign up

Export Citation Format

Share Document