scholarly journals Performance of fly ash and silica fume self-compacting concrete filled steel tube stub columns under axial compression

2021 ◽  
Vol 1144 (1) ◽  
pp. 012012
Author(s):  
Falmata Audu Mustapha ◽  
Arizu Sulaiman ◽  
Roslli Noor Mohamed
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jing Ji ◽  
Maomao Yang ◽  
Zhichao Xu ◽  
Liangqin Jiang ◽  
Huayu Song

The behavior of H-shaped honeycombed stub columns with rectangular concrete-filled steel tube flanges (STHCCs) subjected to axial load was investigated experimentally. A total of 16 specimens were studied, and the main parameters varied in the tests included the confinement effect coefficient of the steel tube (ξ), the concrete cubic compressive strength (fcu), the steel web thickness (t2), and the slenderness ratio of specimens (λs). Failure modes, load-displacement curves, load-strain curves of the steel tube flanges and webs, and force mechanisms were obtained by means of axial compression tests. The parameter influences on the axial compression bearing capacity and ductility were then analyzed. The results showed that rudder slip diagonal lines occur on the steel tube outer surface and the concrete-filled steel tube flanges of all specimens exhibit shear failure. Specimen load-displacement curves can be broadly divided into elastic deformation, elastic-plastic deformation, and load descending and residual deformation stages. The specimen axial compression bearing capacity and ductility increase with increasing ξ, and the axial compression bearing capacity increases gradually with increasing fcu, whereas the ductility decreases. The ductility significantly improves with increasing t2, whereas the axial compression bearing capacity increases slightly. The axial compression bearing capacity decreases gradually with increasing λs, whereas the ductility increases. An analytical expression for the STHCC short column axial compression bearing capacity is established by introducing a correction function ( w ), which has good agreement with experimental results. Finally, several design guidelines are suggested, which can provide a foundation for the popularization and application of this kind of novel composite column in practical engineering projects.


2012 ◽  
Vol 166-169 ◽  
pp. 859-862 ◽  
Author(s):  
Yong Jin Li ◽  
Qing Xin Ren ◽  
Fei Yu Liao

Concrete filled steel tube (CFST) reinforced concrete (CFSTRC) columns subjected to axial compression were experimentally investigated in this paper. A total of ten specimens were tested. The main parameters varied in the experiments were steel tube ratio and concrete strength. It was found that, under axial compression, the column ultimate strength increases with the increasing of steel tube ratio and concrete strength. The work in this paper provides a basis for the further theoretical study on the behavior of CFSTRC columns.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3466 ◽  
Author(s):  
Hongbo Li ◽  
Hao Sun ◽  
Wanlong Zhang ◽  
Huiyan Gou ◽  
Qiuning Yang

In this paper, five groups of C40 fly ash and silica fume self-compacting concrete (SCC) mix proportion tests and in-line multi-cavity steel tube bundle self-compacting concrete shear wall axial compression performance tests and numerical simulation are completed and presented. The influence of fly ash and silica fume additions on SCC mechanical properties and the filled in-line multi-cavity steel tube bundle shear wall mechanical properties are analyzed and studied. With an increase in the fly ash content from 10% to 40%, the compressive strength of self-compacting concrete increases firstly and then decreases. When the fly ash content is 30% and the silica fume content is 4%, the compressive strength of the 28 d age self-compacting concrete is the highest and the compressive strength formula of the wrapped curing SCC is proposed. The failure of steel tube bundle is multi-wave buckling failure. As the SCC is most obviously affected by the collar at the corner point of the steel tube bundle, its compressive strength is 110 MPa, and is 96 MPa higher than the concrete at the middle point of the web. The deformation resistance of SCC is obviously enhanced by the confinement effect.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1853-1867
Author(s):  
Yong Ye ◽  
Yang Liu ◽  
Zi-Xiong Guo ◽  
Rachel Chicchi

2021 ◽  
pp. 136943322110093
Author(s):  
Zhenzhen Liu ◽  
Yiyan Lu ◽  
Shan Li ◽  
Jiancong Liao

A comprehensive study of the shear characteristics of steel fiber reinforced recycled concrete-filled steel tube (SRCFST) columns is conducted. 50 CFST stub columns are tested with the variables of steel tube diameter-thickness ratio ( D/t), shear span-to-depth ratio (λ), axial compression ratio ( n), and concrete mix. Two types of cements, three recycled aggregate percentages, three water-cement ratios, and three steel fiber contents are considered in design of concrete mixes. The experimental results show that SRCFST columns present the coincident shear behavior of the ordinary CFST columns. As λ is increased, shear resistance shows a downtrend, while the flexural strength presents an increasing trend. Imposing axial compression or thickening steel tube contributes to an adequate safety margin in plastic period. Based on the contributions superposition method, a predicted model of the shear capacity of SRCFST columns is proposed in consideration of shear-span ratio, axial compression, and self-stress.


Sign in / Sign up

Export Citation Format

Share Document