scholarly journals Modeling continuous dynamic recrystallization of lightweight alloys by coupling polycrystal plasticity approach

2021 ◽  
Vol 1157 (1) ◽  
pp. 012068
Author(s):  
S F Chen ◽  
S H Zhang ◽  
H W Song ◽  
M G Lee
2021 ◽  
Author(s):  
Marta Kuczynska ◽  
Ulrich Becker ◽  
Youssef Maniar ◽  
Steffen Weihe

Abstract The reoccurring cyclic load imposed onto soldered electronic components during their operation time leads to accumulation of inelastic strains in the structure. On a microscale level, the degree of plastic deformation is determined by the formation and annihilation of dislocations, leading to continuous refinement by creation of new grain boundaries, precipitates relocation and growth. This microstructure rearrangement, triggered by an increasing amount of inelastic deformation, is defined as dynamic recrystallization. This work presents a macroscale modelling approach for the description of continuous dynamic recrystallization observed in Sn-based solder connections. The model used in this work describes kinetics of macroscopic gradual evolution of equivalent grain size, where the initial grain size is continuously refined with increasing accumulated inelastic strain until a saturation grain size is reached. The rate and distribution of dynamic recrystallization is further numerically modelled dependent on the effective accumulated inelastic strain and governing stress multiaxiality. A parameter study of the presented model and its employment in finite element (FE) simulation is further described. Finally, FE simulation of the grain size evolution is demonstrated on an example of a bulky sample under isothermal cyclic mechanical loading, as well as a BGA-like structure under tensile, shear and mixed mode cyclic load.


2020 ◽  
Vol 822 ◽  
pp. 153282 ◽  
Author(s):  
David Canelo-Yubero ◽  
Zsolt Kovács ◽  
J.F. Thierry Simonet Fotso ◽  
Domonkos Tolnai ◽  
Norbert Schell ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4553
Author(s):  
Shaomin Lv ◽  
Jinbin Chen ◽  
Xinbo He ◽  
Chonglin Jia ◽  
Kang Wei ◽  
...  

Sub-solvus dynamic recrystallization (DRX) mechanisms in an advanced γ-γ’ nickel-based superalloy GH4151 were investigated by isothermal compression experiments at 1040 °C with a strain rate of 0.1 s−1 and various true strain of 0.1, 0.3, 0.5, and 0.7, respectively. This has not been reported in literature before. The electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) technology were used for the observation of microstructure evolution and the confirmation of DRX mechanisms. The results indicate that a new dynamic recrystallization mechanism occurs during hot deformation of the hot-extruded GH4151 alloy. The nucleation mechanism can be described as such a feature, that is a primary γ’ (Ni3(Al, Ti, Nb)) precipitate embedded in a recrystallized grain existed the same crystallographic orientation, which is defined as heteroepitaxial dynamic recrystallization (HDRX). Meanwhile, the conventional DRX mechanisms, such as the discontinuous dynamic recrystallization (DDRX) characterized by bulging grain boundary and continuous dynamic recrystallization (CDRX) operated through progressive sub-grain merging and rotation, also take place during the hot deformation of the hot-extruded GH4151 alloy. In addition, the step-shaped structures can be observed at grain boundaries, which ensure the low-energy surface state during the DRX process.


2014 ◽  
Vol 680 ◽  
pp. 15-22 ◽  
Author(s):  
Guang Lu ◽  
Zhi Ping Xie ◽  
Zhi Min Zhang ◽  
Yong Biao Yang ◽  
Bao Cheng Li

The deformation behaviors of as-cast Mg-11Gd-2Y-Zn-Zr magnesium alloy were investigated by compression test with Gleeble-1500 thermal simulator at temperature of 623-753K and strain rate of 0.01-0.5 s-1. The flow stress behaviors of the magnesium alloy were carried out at a strain of 0.7. The strain rate and deformation temperature had great influence on the flow stress behaviors. The flow stress increases with increasing strain rate and decreasing temperature. The flow stress has more than one peak stress at a strain rate of 0.5s-1showing continuous dynamic recrystallization (DRX) mechanism, while other flow stresses exhibited only one peak stress indicating discontinuous dynamic recrystallization (DDRX) mechanism. It was also found that the flow stress behavior could be described by the hyperbolic sine constitutive equation, in which the determined average activation energy is 273.426 kJ·mol-1. The maximum error value between calculated value and experimental value is 5.5%. The deformation map was also established, and the best parameter for hot working was found to be 0.1s-1/753k approximately.


2004 ◽  
Vol 467-470 ◽  
pp. 1151-1156 ◽  
Author(s):  
Cédric Chauvy ◽  
Pierre Barbéris ◽  
Frank Montheillet

Compression tests were used to simulate simple deformation paths within the upper a-range of Zircaloy-4 (i.e. 500°C-750°C). The mechanical behaviour reveals two different domains : at low temperatures and large strain rates, strain hardening takes place before flow softening, whereas this first stage disappears at lower flow stress levels. Strain rate sensitivity and activation energy were determined for both domains. Dynamic recrystallization was investigated using the Electron BackScattering Diffraction (EBSD) technique. It appears that the mechanism involved here is continuous dynamic recrystallization (CDRX), based on the increasing misorientation of subgrain boundaries and their progressive transformation into large angle boundaries. At low strains (e £ 0.3), CDRX kinetics are similar whatever the deformation conditions, while higher temperatures and lower strain rates promote recrystallization at large strains.


Sign in / Sign up

Export Citation Format

Share Document