scholarly journals Study review of the electrical power generation: Wave energy converting device system from the swell

2021 ◽  
Vol 1201 (1) ◽  
pp. 012001
Author(s):  
J V Taboada ◽  
V D Casás ◽  
X Yu ◽  
G M Gemilang ◽  
P Sampaio

Abstract This paper presents the design of an innovative wave energy converter, namely, Electrical Power Generation - WEC Device System from the Swell, abbreviated as WECFS. This WEC device has been registered for a patent in the Spanish Office of the Patents and Brands (OEPM) with the registration number of the innovative utility model-Patent Model: 202131440(5). The study reported in this paper endeavours to demonstrate the technical feasibility, functional mechanical-kinematic behaviour, and the performance of the proof-of-concept WEC device system, in order to determine their energy extraction capacities and functionalities. The overall energy extracted with eight electrical generators A/C is 0.185 MWatts calculated analytically. The levelized cost of energy is a very important metric in determining whether to move forward with the project, where the cost of energy target has been as cheap as $0.07kWh; this value of LCOE could be improved with optimisations on the practical design parameters. This preliminary study investigates the factors influencing standardized and industrialized for the new WEC device system and can be used to guide the optimization of this type of device technology.

2020 ◽  
Vol 12 (6) ◽  
pp. 2178 ◽  
Author(s):  
Omar Farrok ◽  
Koushik Ahmed ◽  
Abdirazak Dahir Tahlil ◽  
Mohamud Mohamed Farah ◽  
Mahbubur Rahman Kiran ◽  
...  

Recently, electrical power generation from oceanic waves is becoming very popular, as it is prospective, predictable, and highly available compared to other conventional renewable energy resources. In this paper, various types of nearshore, onshore, and offshore wave energy devices, including their construction and working principle, are explained explicitly. They include point absorber, overtopping devices, oscillating water column, attenuators, oscillating wave surge converters, submerged pressure differential, rotating mass, and bulge wave converter devices. The encounters and obstacles of electrical power generation from the oceanic wave are discussed in detail. The electrical power generation methods of the generators involved in wave energy devices are depicted. In addition, the vital control technologies in wave energy converters and devices are described for different cases. At present, piezoelectric materials are also being implemented in the design of wave energy converters as they convert mechanical motion directly into electrical power. For this reason, various models of piezoelectric material-based wave energy devices are illustrated. The statistical reports and extensive literature survey presented in this review show that there is huge potential for oceanic wave energy. Therefore, it is a highly prospective branch of renewable energy, which would play a significant role in the near future.


2013 ◽  
Vol 827 ◽  
pp. 142-147
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan ◽  
Sansiri Sirisunhirun ◽  
Nattadate Fuangworawong

The aim of this paper is to analyze the investment of the electrical power generation from the wave energy at the Gulf of Thailand in order to develop the electricity production from the wave energy which is green energy. The performance of wave energy converter (WEC) is evaluated at the Songkla area by using the available wave data, which is adopted from the Marine Meteorological Center. There are two parts in this research. The first one is the electrical power calculation which is the calculation of electrical production by using the Pelamis transformer which depends on the significant wave height (Hs) and the wave period (Tp) at the Gulf of Thailand. The other is the economical analysis, which is the key performance indicator by using the benefit to cost ratio (B/C ratio) and the net present value (NPV) to analyze the potential of investment by comparing with the present electrical fee.


2015 ◽  
Vol 193 (3) ◽  
pp. 17-23 ◽  
Author(s):  
Fumihiko Komatsu ◽  
Manabu Tanaka ◽  
Tomoyuki Murakami ◽  
Yoshihiro Okuno

1977 ◽  
Vol 33 (2) ◽  
pp. 212-222 ◽  
Author(s):  
R. W. Hardie ◽  
J. H. Chamberlin

Author(s):  
J R Bolter

Sir Charles Parsons died some three years after the author was born. In this paper the author looks back at the pioneering work of Parsons in the field of power generation. It shows how he was able to increase output of the steam turbine generator from 7.5 kW in 1884 to 50000 kW in 1930 while increasing efficiency from 1.6 to 36 per cent, and relates these achievements to the current state of the art. Blading design, rotor construction and other aspects of turbine engineering are considered. The conclusion is that Parsons and his associates charted the course which manufacturers and utilities throughout the world have continued to follow, although increasingly sophisticated design and analytical methods have succeeded the intuitive approach of Parsons. His constant search for improved efficiency was and is highly relevant to today's concern for the environment. Finally, although it did not become a practical proposition in his lifetime, the paper reviews Parsons' vision of, and continuing interest in, the gas turbine, first mentioned in his 1884 patents.


Sign in / Sign up

Export Citation Format

Share Document