scholarly journals Comparative analysis and forecasting of isentropic efficiency of gas turbine compressor with ARIMA, VAR, NARNN and ANFIS approaches

2021 ◽  
Vol 1207 (1) ◽  
pp. 012013
Author(s):  
Jiachi Yao ◽  
Chao Liu ◽  
Yunfeng Jin ◽  
Gaofeng Deng ◽  
Yunlong Guan ◽  
...  

Abstract It is extremely important to monitor the status of gas turbine to ensure its safe and reliable operation. In this work, the variation trend of isentropic efficiency of compressor is analysed based on the measured data of F-class heavy-duty gas turbine in practical industrial application. The actual measured data of F-class heavy-duty gas turbine includes the data under start-stop and unstable working conditions, which cannot be directly used for calculation and analysis. To solve this problem, the data selection rules are designed and determined according to the operating conditions of gas turbine to select the data under effective working state. The isentropic efficiency of compressor is calculated based on the selected data. Then the forecasting effects of four forecasting methods on the variation trend of isentropic efficiency of compressor are studied. Four indexes, namely, symmetric mean absolute percentage error (SMAPE), mean absolute percentage error (MAPE), root mean square error (RMSE), and similarity (SIM) values are utilized to evaluate the forecasting accuracy. The research results indicate that the Adaptive Neuro-Fuzzy Inference System (ANFIS) method has better forecasting effect than Autoregressive Integrated Moving Average (ARIMA), Vector Autoregression (VAR) and Nonlinear Autoregression Neural Network (NARNN) for this F-class heavy-duty gas turbine. Through the ANFIS method, the SIM up to 96.77%, the SMAPE and MAPE are less than 0.1, and the RMSE is only 0.1157. Therefore, the ANFIS method is suitable for forecasting the isentropic efficiency of this F-class heavy-duty gas turbine compressor.

Author(s):  
Rodger O. Anderson

Many older heavy duty gas turbine models have a very simple compressor casing design for attaching the stationary blades. It consists of grooves machined into a cast iron casing into which are slid blades with square bases. These bases have extending ears on two sides that engage undercut grooves in the main groove. This design works well, however, when the blade groove is very close to an extraction slot this results in a thin ligament in the casing which eventually cracks. This allows blades to liberate into the flow stream which results in major engine damage. One engine, the GE frame 5 with compressor cast iron casings has a tendency to crack in the blade attachment groove at the horizontal joint in row 10 where the air extraction is taken. The casing hook tends to bend due to the aerodynamic forces on the blades. An analysis shows how the blade forces are transferred to the weak casing ligament. This results in a crack at the thin ligament. The bent and cracked casing hooks are generally visible through a borescope inserted into the extraction cavity from the air pipe flanges. If this situation is not repaired, the cracks can lead to both casing material and blade liberation into the compressor flow stream. A quick and low cost repair has been developed to restore these engines to a reliable operating condition.


2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  

2011 ◽  
Vol 84-85 ◽  
pp. 259-263
Author(s):  
Xun Liu ◽  
Song Tao Wang ◽  
Xun Zhou ◽  
Guo Tai Feng

In this paper, the trailing edge film cooling flow field of a heavy duty gas turbine cascade has been studied by central difference scheme and multi-block grid technique. The research is based on the three-dimensional N-S equation solver. By way of analysis of the temperature field, the distribution of profile pressure, and the distribution of film-cooling adiabatic effectiveness in the region of trailing edge with different cool air injection mass and different angles, it is found that the impact on the film-cooling adiabatic effectiveness is slightly by changing the injection mass. The distribution of profile pressure dropped intensely at the pressure side near the injection holes line with the large mass cooling air. The cooling effect is good in the region of trailing edge while the injection air is along the direction of stream.


Author(s):  
I. Ispas ◽  
H. J. Zollinger

To evaluate the potential of the compressor of Sulzer’s Typ 3 gas turbine, a series of engine tests was analyzed with two computer codes. The comparison between measured and calculated performance map are given in the paper. The design goal was to find modifications, which can be applied easily to already operating engines. The simplest option-increase of shaft speed with the existing blades-would have caused high loss due to increased tip Mach number. The calculation revealed, that a newly designed first rotor blade is an appropriate modification to increase massflow and efficiency. No further change is required, because the calculations indicate, that all subsequent stages operate at near optimum incidence. The calculations were confirmed experimentally. The paper presents the new rotor blade and its influence on the compressor calculated and measured performance.


Sign in / Sign up

Export Citation Format

Share Document