scholarly journals Exploiting graph neural network with one-shot learning for fault diagnosis of mechanical equipment

2021 ◽  
Vol 1207 (1) ◽  
pp. 012022
Author(s):  
Shuai Yang ◽  
Xu Chen ◽  
Yun Bai

Abstract For the classification of mechanical fault diagnosis, a graph neural network (GNN) method with one-shot learning is proposed. Convolutional Neural Network (CNN) is used to extract the feature vectors and One-Hot coding from images of Fault diagnosis of mechanical equipment. Inputting feature vectors and One-Hot coding into GNN, according to the Adjacency Matrix between vertices in the Graph, and is used for classification and inference. The method with one-shot learning is used for fault diagnosis classification. Through the fault classification for the industrial robot RV reducer and public data set CWRU pictures, the effectiveness of the method is verified. Five categories are used for fault diagnosis and classification in RV Reducer of the industrial robots. 80 categories are used in the public data set CWRU, and 55 categories are used as the training set. GNN is employed to spread the label information from the supervised sample of the unlabeled query data. The large-scale dataset can then be used as baseline classes to learn transferable knowledge for classifying novelties with one-shot samples. The one-shot learning with graph neural network GNN significantly improves the classification accuracy. The results show that the proposed method is superior to other similar methods and has a substantial potential for improvement in Fault diagnosis of mechanical equipment.

2021 ◽  
Vol 67 (10) ◽  
pp. 489-500
Author(s):  
Shuai Yang ◽  
◽  
Xing Luo ◽  
Chuan Li

As a key component of a mechanical drive system, the failure of the reducer will usually cause huge economic losses and even lead to serious casualties in extreme cases. To solve this problem, a two-dimensional convolutional neural network (2D-CNN) is proposed for the fault diagnosis of the rotation vector (RV) reducer installed on the industrial robot (IR). The proposed method can automatically extract the features from the data and reduce the connections between neurons and the parameters that need to be trained with its local receptive field, weight sharing, and subsampling features. Due to the aforementioned characteristics, the efficiency of network training is significantly improved, and verified by the experimental simulations. Comparative experiments with other mainstream methods are carried out to further validate the fault classification accuracy of the proposed method. The results indicate that the proposed method out-performs all the selected methods.


Author(s):  
Alaa Abdulhady Jaber ◽  
Robert Bicker

Industrial robots have long been used in production systems in order to improve productivity, quality and safety in automated manufacturing processes. An unforeseen robot stoppage due to different reasons has the potential to cause an interruption in the entire production line, resulting in economic and production losses. The majority of the previous research on industrial robots health monitoring is focused on monitoring of a limited number of faults, such as backlash in gears, but does not diagnose the other gear and bearing faults. Thus, the main aim of this research is to develop an intelligent condition monitoring system to diagnose the most common faults that could be progressed in the bearings of industrial robot joints, such as inner/outer race bearing faults, using vibration signal analysis. For accurate fault diagnosis, time-frequency signal analysis based on the discrete wavelet transform (DWT) is adopted to extract the most salient features related to faults, and the artificial neural network (ANN) is used for faults classification. A data acquisition system based on National Instruments (NI) software and hardware was developed for robot vibration analysis and feature extraction. An experimental investigation was accomplished using the PUMA 560 robot. Firstly, vibration signals are captured from the robot when it is moving one joint cyclically. Then, by utilising the wavelet transform, signals are decomposed into multi-band frequency levels starting from higher to lower frequencies. For each of these levels the standard deviation feature is computed and used to design, train and test the proposed neural network. The developed system has showed high reliability in diagnosing several seeded faults in the robot.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2000 ◽  
Author(s):  
Dongdong Zhao ◽  
Feng Liu ◽  
He Meng

The bearing is a component of the support shaft that guides the rotational movement of the shaft, widely used in the mechanical industry and also called a mechanical joint. In bearing fault diagnosis, the accuracy much depends on the feature extraction, which always needs a lot of training samples and classification in the commonly used methods. Neural networks are good at latent feature extraction and fault classification, however, they have problems with instability and over-fitting, and more labeled samples must be trained. Switchable normalization and semi-supervised learning are introduced to solve the above obstacles in this paper, which proposes a novel bearing fault diagnosis method based on switchable normalization semi-supervised generative adversarial networks (SN-SSGAN) with 1-dimensional representation of vibration signals as input. Experimental results showed that the proposed method has a desirable 99.93% classification accuracy in the case of less labeled data from the public data set of West Reserve University, which is better than the state-of-the-art methods.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110195
Author(s):  
Jianwen Guo ◽  
Xiaoyan Li ◽  
Zhenpeng Lao ◽  
Yandong Luo ◽  
Jiapeng Wu ◽  
...  

Fault diagnosis is of great significance to improve the production efficiency and accuracy of industrial robots. Compared with the traditional gradient descent algorithm, the extreme learning machine (ELM) has the advantage of fast computing speed, but the input weights and the hidden node biases that are obtained at random affects the accuracy and generalization performance of ELM. However, the level-based learning swarm optimizer algorithm (LLSO) can quickly and effectively find the global optimal solution of large-scale problems, and can be used to solve the optimal combination of large-scale input weights and hidden biases in ELM. This paper proposes an extreme learning machine with a level-based learning swarm optimizer (LLSO-ELM) for fault diagnosis of industrial robot RV reducer. The model is tested by combining the attitude data of reducer gear under different fault modes. Compared with ELM, the experimental results show that this method has good stability and generalization performance.


2021 ◽  
Author(s):  
Daiki Kato ◽  
Kenya Yoshitugu ◽  
Naoki Maeda ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Most industrial robots are taught using the teaching playback method; therefore, they are unsuitable for use in variable production systems. Although offline teaching methods have been developed, they have not been practiced because of the low accuracy of the position and posture of the end-effector. Therefore, many studies have attempted to calibrate the position and posture but have not reached a practical level, as such methods consider the joint angle when the robot is stationary rather than the features during robot motion. Currently, it is easy to obtain servo information under numerical control operations owing to the Internet of Things technologies. In this study, we propose a method for obtaining servo information during robot motion and converting it into images to find features using a convolutional neural network (CNN). Herein, a large industrial robot was used. The three-dimensional coordinates of the end-effector were obtained using a laser tracker. The positioning error of the robot was accurately learned by the CNN. We extracted the features of the points where the positioning error was extremely large. By extracting the features of the X-axis positioning error using the CNN, the joint 1 current is a feature. This indicates that the vibration current in joint 1 is a factor in the X-axis positioning error.


2021 ◽  
Author(s):  
Hao DeChen ◽  
HuaLing Li ◽  
JinYing Huang

Abstract Rotating machinery (RM) is one of the most common mechanical equipment in engineering applications and has a broad and vital role. Rotating machinery includes gearboxes, bearing motors, generators, etc. In industrial production, the important position of rotating machinery and its variable speed and complex working conditions lead to unstable vibration characteristics, which have become a research hotspot in mechanical fault diagnosis. Aiming at the multi-classification problem of rotating machinery with variable speed and complex working conditions, this paper proposes a fault diagnosis method based on the construction of improved sensitive mode matrix (ISMM), isometric mapping (ISOMAP) and Convolution-Vision Transformer network (CvT) structure. After overlapping and sampling the variable speed signals, a high-dimensional ISMM is constructed, and the ISMM is mapped into the manifold space through ISOMAP manifold learning. This method can extract the fault transient characteristics of the variable speed signal, and the experiment proves that it can solve the problem that the conventional method cannot effectively extract the characteristics of the variable speed data. CvT combines the advantages of self-attention mechanism and convolution in CNN, so the CvT network structure is used for feature extraction and fault recognition and classification. The CvT network structure takes into account both global feature extraction and local feature extraction, which greatly reduces the number of training iterations and the size of the network model. Two data sets (the HFXZ-I planetary gearbox variable speed data set in the laboratory and the bearing variable speed public data set of the University of Ottawa in Canada) are used to experimentally verify the proposed fault diagnosis model. Experimental results show that the proposed fault diagnosis model has good recognition accuracy and robustness.


Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Jinrui Wang ◽  
Zenghui An ◽  
Yu Xin

Deep learning method is gradually applied in the field of mechanical equipment fault diagnosis because it can learn complex and useful features automatically from the vibration signals. Among the many intelligent diagnostic models, convolutional neural network has been gradually applied to intelligent fault diagnosis of bearings due to its advantages of local connection and weight sharing. However, there are still some drawbacks. (1) The training process of convolutional neural network is slow and unstable. It has more training parameters. (2) It cannot perform well under different working conditions, such as noisy environment and different workloads. In this paper, a novel model named adaptive and fast convolutional neural network with wide receptive field is presented to overcome the aforementioned deficiencies. The prime innovations include the following. First, a deep convolutional neural network architecture is constructed using the scaled exponential linear unit activation function and global average pooling. The model has fewer training parameters and can converge rapidly and stably. Second, the model has a wide receptive field with two medium and three small length convolutional kernels. It also has high diagnostic accuracy and robustness when the environment is noisy and workloads are changed compared with other models. Furthermore, to demonstrate how the wide receptive field convolutional neural network model works, the reasons for high model performance are analyzed and the learned features are also visualized. Finally, the wide receptive field convolutional neural network model is verified by the vibration dataset collected in the background of high noise, and the results indicate that it has high diagnostic performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Junfeng Guo ◽  
Xingyu Liu ◽  
Shuangxue Li ◽  
Zhiming Wang

As one of the important parts of modern mechanical equipment, the accurate real-time diagnosis of rolling bearing is particularly important. Traditional fault diagnosis methods have some disadvantages, such as low diagnostic accuracy and difficult fault feature extraction. In this paper, a method combining Wavelet transform (WT) and Deformable Convolutional Neural Network (D-CNN) is proposed to realize accurate real-time fault diagnosis of end-to-end rolling bearing. The vibration signal of rolling bearing is taken as the monitoring target. Firstly, the Orthogonal Matching Pursuit (OMP) algorithm is used to remove the harmonic signal and retain the impact signal and noise. Secondly, the time-frequency map of the signal is obtained by time-frequency transform using Wavelet analysis. Finally, the D-CNN is used for feature extraction and classification. The experimental results show that the accuracy of the method can reach 99.9% under various fault modes, and it can accurately identify the fault of rolling bearing.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 680 ◽  
Author(s):  
Zhang ◽  
Zhou

This study presents a comprehensive fault diagnosis method for rolling bearings. The method includes two parts: the fault detection and the fault classification. In the stage of fault detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault, a generalized multi-scale feature extraction method is developed to fully extract fault information by combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly, the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive features from the candidate feature pool to construct the final feature vectors, and the final feature vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally, experiments and comparative research are carried out to verify the performance of the proposed method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a more robust and excellent ability to identify different fault types and severity compared with other conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document