scholarly journals Determination of earthquake prone zones at university of tadulako based on dominant periods and peak ground acceleration (PGA)

2022 ◽  
Vol 1212 (1) ◽  
pp. 012037
Author(s):  
I U Meidji ◽  
S Mulyati ◽  
N R Janat ◽  
H Jayadi ◽  
Asrafil

Abstract University of Tadulako is the largest State University in Palu City. When an earthquake with a magnitude of 7.4 Mw on September 28, 2018, occurred, many buildings were damaged and even collapsed at that time, even causing casualties due to the rubble. Research on the Local Site Effect is essential for the assessment of seismic hazard. In this study, the local site effect was analyzed using the HVSR method based on microtremor data. The predominant Period (To) ranges between 1.709 s to 3.816 s, indicates that this area consists of alluvium and has a very thick sediment layer. Another parameter calculated in this paper is the peak ground acceleration (PGA) with values from 0.914 g to 0.924 g. This value is the first indicated soil damage level due to ground motions. The results of this study can be used as a consideration in the development of regional spatial planning and building structures based on earthquake analysis.

2017 ◽  
Vol 17 (4B) ◽  
pp. 82-95
Author(s):  
Nguyen Anh Duong ◽  
Pham Dinh Nguyen ◽  
Vu Minh Tuan ◽  
Bui Van Duan ◽  
Nguyen Thuy Linh

In this study, we have carried out the probabilistic seismic hazard analysis in Hanoi based on the latest seismotectonic data. The seismic hazard map shows peak ground acceleration values on rock corresponding to the 10% probability of exceedance in a 50-year time period (approximately return periods of 500 years). The calculated results reveal that the maximum ground acceleration can occur on rock in Hanoi is about 0.13 g corresponding to the shaking intensity level of VIII on the MSK-64 scale. The ground motion values calculated on rock vary according to the local site conditions. We have evaluated and corrected the local site effects on ground motion in Ha Dong district, Hanoi by using microtremor and borehole data. The Nakamura’s H/V spectral ratio method has been applied to establish a map of ground dominant periods in Ha Dong with a TS range of 0.6 - 1.2 seconds. The relatively high values of periods indicate that Ha Dong has soft soil and thick Quaternary sediments. The sediment thickness in Ha Dong is calculated to vary between 30 - 75 m based on ground dominant periods and shear wave velocity VS30 = 171 - 254 m/s. The results of local site effect on ground motion show that the 500-year return period peak ground acceleration in Ha Dong ranges from 0.13 g to 0.17 g. It is once again asserted that the seismic hazard in Hanoi is a matter of great concern, due not only to the relatively high ground acceleration, but also to the seismic characteristics of soil (low shear wave velocity, ground dominant period of approximately 1 second).


2021 ◽  
Vol 4 (2) ◽  
pp. 67
Author(s):  
Suhayat Minardi ◽  
Nirmala Aprianti ◽  
Akhmad Solikhin

Lombok Island is an active seismic area in Indonesia potentially hit by an earthquake due to located between two earthquake generators from the south and the North. Several large earthquakes rocked Lombok, an earthquake with a magnitude of 6.4 on July 29, 2018, and 7.0 on August 5, 2018. This study aims to determine the characteristics of the local site effect based on the dominant frequency value ( ), soil amplification ( ), sediment layer thickness (d), , dominant period (T0), and seismic vulnerability index ( ) and to comprehend the soil class (site class) based on the thickness of the sediment layer (d), and  in the North Lombok region. The data used is secondary data from microtremor signal recordings in North Lombok Regency in 2018. Data processing used Geopsy software, and microtremor data were analyzed using the HVSR method. From processing the HVSR data, the dominant frequency value about (0.8 - 18) Hz, amplification value (1.7 – 9.7), dominant period value (0.05 – 1.2) seconds, seismic vulnerability index value (0.4 – 71) , and the value of   in the study area (20.05 – 287.04) m/s. Based on microtremor analysis, the local site effect indicates that alluvium rocks caused stronger earthquake vibrations and more damage. Whereas the Kalibabak and Lekopiko formations caused fewer earthquake vibrations and less wear. Based on the dominant period and , area study classify as Site Class IV class E and Site Class III class D  Copyright © 2021 IPR. All rights reserved.


2008 ◽  
Author(s):  
Koichi Hayashi ◽  
Masahito Tamura ◽  
Tsutomu Hirade ◽  
Kosh Nath Adhikari ◽  
Yu Shizhou

2010 ◽  
Vol 1 (1) ◽  
pp. 25-41 ◽  
Author(s):  
T. G. Sitharam ◽  
K. S. Vipin

The local site effects play an important role in the evaluation of seismic hazard. The proper evaluation of the local site effects will help in evaluating the amplification factors for different locations. This article deals with the evaluation of peak ground acceleration and response spectra based on the local site effects for the study area. The seismic hazard analysis was done based on a probabilistic logic tree approach and the peak horizontal acceleration (PHA) values at the bed rock level were evaluated. Different methods of site classification have been reviewed in the present work. The surface level peak ground acceleration (PGA) values were evaluated for the entire study area for four different site classes based on NEHRP site classification. The uniform hazard response spectrum (UHRS) has been developed for the city of Bangalore and the details are presented in this work.


2020 ◽  
Vol 13 (7) ◽  
Author(s):  
Asskar Janalizadeh Choobbasti ◽  
Saman Soleimani Kutanaei ◽  
Hamed Taleshi Ahangari ◽  
Meisam Mahmudi Kardarkolai ◽  
Hossein Motaghedi

2016 ◽  
Vol 10 (5) ◽  
pp. 1233-1251 ◽  
Author(s):  
Suleyman Adanur ◽  
Ahmet C. Altunisik ◽  
Kurtulus Soyluk ◽  
A. Aydin Dumanoglu ◽  
Alemdar Bayraktar

Sign in / Sign up

Export Citation Format

Share Document