scholarly journals Design and control of electromagnetic clutch actuation system for automated manual transmission

Author(s):  
Ashish Ranjan ◽  
S Prasanth ◽  
Fenin Cherian ◽  
P Baskar
Author(s):  
Simon J. H. Trask ◽  
Greg J. Jankord ◽  
Aditya A. Modak ◽  
Brian M. Rahman ◽  
Giorgio Rizzoni ◽  
...  

The introduction of hybrid vehicle architectures into the mass car market has dramatically increased fault detection and mitigation strategies seen in vehicles to match the growth in potential failures coming from increasingly complex powertrain architectures. To meet this increased demand for fault detection and mitigation of multiple powertrain components, advanced methodologies have been developed to determine the functional safety of systems. This paper focuses on the use of one of those advanced methodologies, structural analysis, to develop the design, implementation, diagnostics, and control of a prototype automated manual transmission. Structural analysis is the concept of analyzing the mathematical structure of a system to determine the diagnostic capabilities of sensors in the system. From this information, a controls strategy can be developed to address potential failure modes of a system utilizing the derived equations and knowledge of which sensors provide coverage for failure modes analyzed. Moreover, the need for additional sensors can be determined through this analysis. Using structural analysis, the Ohio State University EcoCAR 3 research team carried out a diagnostic and mitigation study during the development of their automated manual transmission.


2012 ◽  
Author(s):  
Yulong Lei ◽  
Hongbo Liu ◽  
Jun Qiu ◽  
Jianguo Zhang ◽  
Youde Li

Author(s):  
Sivakumar Ramalingam ◽  
Hanumath VV Prasad ◽  
Srinivasa Prakash Regalla

The closed loop feedback control system of an Automated Manual Transmission (AMT) electro-pneumatic clutch actuator is used for intelligent real time condition monitoring, enhanced diagnostics and prognostic health management of the dry clutch system, by integrating with the existing gearbox prognostics observer. The real-time sensor data of the clutch actuator piston position is analyzed for monitoring the condition of the clutch system. Original parameters of the new clutch are stored in the Electrically Erasable Programmable Read-only Memory (EEPROM) of the AMT controller and the real-time data is used by the observer for assessing the degradation/wear of the frictional clutch parts. Also, clutch slip during torque transmission is monitored, using the engine speed and the gearbox input shaft speed from Controller Area Network (CAN). Condition monitoring of clutch system provides enhanced prognostic functionality for AMT system which ensures consistent clutch performance, gear shift quality and timely warning for recalibration, repair and/or replacement of the critical wear and tear parts. Also, systematic analysis of the monitored data provides an accurate diagnosis of a developing fault. Thus, with the advanced control systems in place for AMT, a closed loop feedback based condition monitoring system is modelled for improved diagnostics and prognostics of AMT clutch system.


Sign in / Sign up

Export Citation Format

Share Document