scholarly journals Design and Simulation of Microstrip Hairpin Bandpass Filter with Open Stub and Defected Ground Structure (DGS) at X-Band Frequency

Author(s):  
T Hariyadi ◽  
S Mulyasari ◽  
Mukhidin
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Mao Huang ◽  
Zhenhai Shao ◽  
Zhaosheng He ◽  
Chang Jiang You ◽  
Di Jiang

A half mode substrate integrated waveguide-to-defected ground structure (HMSIW-DGS) cell and its embedded form are proposed to miniaturize a bandpass filter. Both cells can purchase wideband frequency response and low insertion loss, as well as simple and easy fabrication. By cascading two of them according to design requirement, an X-band bandpass filter is designed and measured to meet compact size, low insertion loss, good return loss, second harmonic suppression, and linear phase.


Author(s):  
E. Edwar ◽  
M.R. Yusron ◽  
Dharu Arseno

Filter is an important part in telecommunication system including in radar system. To get the better performance in selecting the signal, a ftlter must have a good Q-Factor. In this paper, an investigation of a ftlter design for synthetic radar has been successfully done. This ftlter has been designed to work at x-band using square loop resonator (SLR). A Defected Ground Structure (DGS) has been implemented to this work to increase the Q-factor of the ftlter. The result of measurement getting that the center frequency at 9.51 GHz with the bandwidth 610 MHz and PCB size of this ftlter is 22 mm x 16 mm.


2018 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S. Sah ◽  
M. R. Tripathy ◽  
A. Mittal

A novel dual  layer rectangular printed Antenna based on loop type Frequency selective surfaces with five concentric rings and I shaped defected ground structure (DGS) is designed and investigated. The deigned antenna is tested for application in C band, WiFi devices and some cordless telephones and X band radiolocation, airborne and naval radars as multiband  operational frequencies are at 5.5GHz, 6.81GHz, 9.3GHz and thus covers two wireless communication band C Band (4 to 8GHz ) and  X band (8 to 12 GHz) The bandwidth is 200MHz, 300MHz and 1GHz respectively and measured gain of this designed antenna are 2.42dBi against 5.5GHz, 2.80dBi against 6.81GHz, 6.76dBi against 9.3GHz. The proposed antenna in addition to multiband operation also exhibits minituarization.The Floquet port technique is used to analyse concentric rings. The Results comparison of proposed structure with the basic dual layer antenna resonaing at 5.5GHz  shows the patch area is reduced by 58.15% while the volume of the antenna is reduced by 81.5%. 


Sign in / Sign up

Export Citation Format

Share Document