scholarly journals Study on Thermal Stability and High Temperature Gas Production of Silicate Concrete

Author(s):  
Liang Li ◽  
Jijun Zhang ◽  
Junfang Zheng ◽  
Dongliang Zhang ◽  
Xiaoning Yuan ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881745 ◽  
Author(s):  
Ying Zhang ◽  
Zhanghua Lian ◽  
Mi Zhou ◽  
Tiejun Lin

At the high or extra-high temperatures in a natural gas oilfield, where the premium connection is employed by casing, gas leakage in the wellbore is always detected after several years of gas production. As the viscoelastic material’s mechanical properties change with time and temperature, the relaxation of the contact pressure on the connection sealing surface is the main reason for the gas leakage in the high-temperature gas well. In this article, tension-creep experiments were conducted. Furthermore, a constitutive model of the casing material was established by the Prony series method. Moreover, the Prony series’ shift factor was calculated to study the thermo-rheological behavior of the casing material ranging from 120°C to 300°C. A linear viscoelastic model was implemented in ABAQUS, and the simulation results are compared to our experimental data to validate the methodology. Finally, the viscoelastic finite element model is applied to predict the relaxation of contact pressure on the premium connections’ sealing surface versus time under different temperatures. And, the ratio of the design contact pressure and the intending gas sealing pressure is recommended for avoiding the premium connections failure in the high-temperature gas well.


SPE Journal ◽  
2012 ◽  
Vol 17 (01) ◽  
pp. 177-186 ◽  
Author(s):  
C.. Fan ◽  
W.. Shi ◽  
P.. Zhang ◽  
H.. Lu ◽  
N.. Zhang ◽  
...  

Summary Scale control in deepwater oil and gas production is often challenging not only because of the geological and mechanical limitations associated with deepwater wells, but also because of the high-temperature (>150°C) and high-pressure (>10,000 psi) (HT/HP) environment, which may be associated with brine containing high total dissolved solids (TDSs) (>300,000 mg/L). These extreme conditions make scale prediction, control, and testing difficult because of the requirements for special alloys, pumps, and control equipment that are not readily available. Therefore, few reliable ultrahigh-temperature/ultrahigh-pressure (ultra-HT/HP) data are available. To overcome such challenges, an efficient flow-loop method has been established to study both the equilibrium and the kinetics of scale formation and inhibition at ultra-HT/HP conditions. This paper will discuss (1) an efficient flow-loop method to study the solubility of scale minerals at ultra-HT/HP conditions, (2) solubility of barite at temperature up to 200°C and pressure up to 20,000 psi, and (3) scale control and inhibitor selection for deepwater oil and gas production at ultra-HT/HP conditions. Specifically, the performance and thermal stability of some common scale inhibitors at the high-temperature conditions were studied in terms of barite-scale inhibition. The results to date indicated that (1) the solubility of barite at up to 200°C and 24,000 psi can be measured precisely by this newly developed flow-loop apparatus, (2) the rate of mineral scale formation at HT/HP may be considerably faster than previously projected from low-temperature studies and, hence, difficult to inhibit, (3) different scale inhibitors have shown considerably different thermal stability. The results and findings from these studies validate a new HT/HP apparatus for scale and inhibitor testing and information for better scale control at HT/HP conditions.


2009 ◽  
Vol 38 (4) ◽  
pp. 569-573 ◽  
Author(s):  
Ariel Virshup ◽  
Lisa M Porter ◽  
Dorothy Lukco ◽  
Kristina Buchholt ◽  
Lars Hultman ◽  
...  

Author(s):  
I. N. Kravchenko ◽  
Yu. A. Kuznetsov ◽  
A. L. Galinovskii ◽  
S. A. Velichko ◽  
P. A. Ionov ◽  
...  

The results of studies of the thermal stability of materials operating in a plasma jet at high temperatures and a sharp change in thermal loads are presented. It has been proven that the use of plasma generators with the introduction of various powder materials makes it possible to simulate the operating conditions of parts in high-temperature gas flows with heated particles. The effect of the introduced powder materials on the thermal stability of samples prepared by plasma spraying from molybdenum, as well as tungsten and tungsten-based compositions is investigated. An installation is proposed for assessing the thermal stability of composite materials and protective hardening coatings operating under high-temperature gas flows, which makes it possible to determine their erosion resistance.


2013 ◽  
Vol 700 ◽  
pp. 213-216
Author(s):  
Ling Feng Li

In natural gas production engineering for high-temperature gas well, material selection and sizes optimization of casing material are one of the important phases. This paper presents the effect of high temperature on material strength of casing, performance matching requirements of high-strength material, sizes optimization of casing material for high-temperature gas well and examples for application.By testing, the study above is good and easy for on-the-spot application.


2007 ◽  
Vol 33 (5) ◽  
pp. 244-251 ◽  
Author(s):  
Narihito NAKAGAWA ◽  
Hideki OHTSUBO ◽  
Kazutoshi SHIMIZU ◽  
Yoshiharu WAKU ◽  
Chiyuki NAKAMATA ◽  
...  

Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document