scholarly journals Numerical analysis of flow structures behind the bluff body at different aspect ratio

Author(s):  
Aditya Sharma ◽  
Pankaj Kumar ◽  
Santosh Kumar Singh
Author(s):  
Lara Schembri Puglisevich ◽  
Gary Page

Unsteady Large Eddy Simulation (LES) is carried out for the flow around a bluff body equipped with an underbody rear diffuser in close proximity to the ground, representing an automotive diffuser. The goal is to demonstrate the ability of LES to model underbody vortical flow features at experimental Reynolds numbers (1.01 × 106 based on model height and incoming velocity). The scope of the time-dependent simulations is not to improve on Reynolds-Averaged Navier Stokes (RANS), but to give further insight into vortex formation and progression, allowing better understanding of the flow, hence allowing more control. Vortical flow structures in the diffuser region, along the sides and top surface of the bluff body are successfully modelled. Differences between instantaneous and time-averaged flow structures are presented and explained. Comparisons to pressure measurements from wind tunnel experiments on an identical bluff body model shows a good level of agreement.


Author(s):  
M N A Saadun ◽  
C S Nor Azwadi ◽  
Z A A Malek ◽  
M Z A Manaf ◽  
M S Zakaria ◽  
...  

Author(s):  
Chin-Tung Cheng ◽  
Ming-Hsiang Shih

This research aims to investigate the energy dissipation characteristic and impact behavior of rocking piers under free vibration. Research parameters include rocking interfaces (stiff or flexible), geometry of the column cross-section (circular or rectangular), aspect ratio of the columns, anchorage of prestressing tendons and scale effect. To validate the proposed theory, five columns were constructed and will be tested. A numerical process was proposed to simulate the rocking behavior of columns. Numerical analysis revealed that aspect ratio remarkably affects the rocking behavior, however, size effect and shape of cross section had no significant influence on the rocking behavior. Contrary to the instinct, anchored columns may have less damping due to the higher restoring forces that leads to larger acceleration and slower degradation in kinetic energy.


Author(s):  
Detlef Pape ◽  
Herve´ Jeanmart ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

An experimental and numerical investigation of the pressure loss and the heat transfer in the bend region of a smooth two-pass cooling channel with a 180°-turn has been performed. The channels have a rectangular cross-section with a high aspect ratio of H/W = 4. The heat transfer has been measured using the transient liquid crystal method. For the investigations the Reynolds-number as well as the distance between the tip and the divider wall (tip distance) are varied. While the Reynolds number varies from 50’000 to 200’000 and its influence on the normalized pressure loss and heat transfer is found to be small, the variations of the tip distance from 0.5 up to 3.65 W produce quite different flow structures in the bend. The pressure loss over the bend thus shows a strong dependency on these variations.


Sign in / Sign up

Export Citation Format

Share Document