Impact Behavior of Rocking Bridge Piers

Author(s):  
Chin-Tung Cheng ◽  
Ming-Hsiang Shih

This research aims to investigate the energy dissipation characteristic and impact behavior of rocking piers under free vibration. Research parameters include rocking interfaces (stiff or flexible), geometry of the column cross-section (circular or rectangular), aspect ratio of the columns, anchorage of prestressing tendons and scale effect. To validate the proposed theory, five columns were constructed and will be tested. A numerical process was proposed to simulate the rocking behavior of columns. Numerical analysis revealed that aspect ratio remarkably affects the rocking behavior, however, size effect and shape of cross section had no significant influence on the rocking behavior. Contrary to the instinct, anchored columns may have less damping due to the higher restoring forces that leads to larger acceleration and slower degradation in kinetic energy.

2004 ◽  
Vol 412-414 ◽  
pp. 1045-1049 ◽  
Author(s):  
K. Kajikawa ◽  
T. Hayashi ◽  
K. Funaki ◽  
E.S. Otabe ◽  
T. Matsushita

Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


2013 ◽  
Vol 675 ◽  
pp. 158-161
Author(s):  
Lv Zhou Ma ◽  
Jian Liu ◽  
Yu Qin Yan ◽  
Xun Lin Diao

Based on positional finite element method (FEM), a new, simple and accurate lumped mass matrix to solve dynamic geometrical nonlinear problems of materials applied to variable cross-section beam element has been proposed. According to Hamilton theory and the concept of Kinetic energy, concentrate the beam element mass to the two nodes in certain proportion, the lumped mass matrix is deduced. The lumped mass matrix is diagonal matrix and its calculated quantity is less than using consistent mass matrix about properties of materials under the same calculation precision.


2003 ◽  
Vol 9 (3) ◽  
pp. 770-775 ◽  
Author(s):  
Soon-Cheol Kong ◽  
Seong-Hae Ok ◽  
Young-Wan Choi ◽  
Joong-Seon Choe ◽  
Yong-Hwan Kwon ◽  
...  

Author(s):  
Christopher Clark ◽  
Graham Pullan ◽  
Eric Curtis ◽  
Frederic Goenaga

Low aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high endwall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet endwall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent: current practice for a low aspect ratio vane; a design exempt from thickness constraints; and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitters geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flowfield was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.


Sign in / Sign up

Export Citation Format

Share Document