momentum ratio
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Amit Kashi ◽  
Amir Michaelis

We run a numerical experiment ejecting stellar winds in a very massive binary system measuring the properties of the resulting colliding wind structure and accreted mass onto the companion under different conditions. Colliding massive binaries interact and create a colliding wind structure with a shape that depends on the momentum ratio, orbital motion, distance between the stars, and other factors. We run simulations of a static LBV-WR binary and in each simulation abruptly varying the mass loss rate of the LBV from the fiducial value. The modified wind front propagates and interacts with the previous colliding wind structure, and modifies its shape. We calculate the emitted X-ray from the interaction and investigate the proprieties of the new shape. We derive the mass accretion rate onto the secondary, and find that it depends on the momentum ratio of the winds. We then add orbital velocity that reduces the mass accretion rate, a similar behaviour as the analytical estimates based on modified Bondi–Hoyle–Lyttleton. Creating a large set of simulations like those presented here can allow constraining parameters for specific colliding wind binaries and derive their stellar parameters and orbital solution.


2021 ◽  
Vol 932 ◽  
Author(s):  
P.D. Huck ◽  
R. Osuna-Orozco ◽  
N. Machicoane ◽  
A. Aliseda

A canonical co-axial round-jet two-fluid atomizer where atomization occurs over a wide range of momentum ratios: $M=1.9 - 376.4$ is studied. The near field of the spray, where the droplet formation process takes place, is characterized and linked to droplet dispersion in the far field of the jet. Counterintuitively, our results indicate that in the low-momentum regime, increasing the momentum in the gas phase leads to less droplet dispersion. A critical momentum ratio of the order of $M_c=50$ , that separates this regime from a high-momentum one with less dispersion, is found in both the near and far fields. A phenomenological model is proposed that determines the susceptibility of droplets to disperse beyond the nominal extent of the gas phase based on a critical Stokes number, $St=\tau _p/T_E=1.9$ , formulated based on the local Eulerian large scale eddy turnover time, $T_E$ , and the droplets’ response time, $\tau _p$ . A two-dimensional phase space summarizes the extent of these different regimes in the context of spray characteristics found in the literature.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ingyu Lee ◽  
Gijeong Jeong ◽  
Youngbin Yoon
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jiabao Xu ◽  
Ping Jin ◽  
Ruizhi Li ◽  
Jue Wang ◽  
Guobiao Cai

The LOX/methane engine has an admirable performance under a supercritical state. However, the properties of methane change drastically with varying injection temperature. Because the injector can greatly affect the atomization and combustion, this study performed a three-dimensional numerical simulation of atomization, combustion, and heat transfer in a subscale LOX/methane engine to evaluate the effect of the main fluid parameters with different methane injection temperatures and different injectors on atomization performance and combustion performance. The results show that the larger propellant momentum ratio and Weber number can improve the heat flux and combustion stability in shear coaxial injector, while the influence in swirl coaxial injector is relatively small. Moreover, in shear coaxial injector and in swirl coaxial injector, the larger propellant momentum ratio and Weber number can reduce the droplet size, enhance atomization performance, and improve the combustion efficiency. The numerical model provides an economical method to evaluate the main fluid parameters and proposes new design principles of injectors in LOX/methane engine.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 465
Author(s):  
Leila Alizadeh ◽  
João Fernandes

River channel confluences are rather important interfaces where intense changes in physical, mixing and sediment transport processes occur. Following an experimental campaign, the main flow mechanisms in confluences and the development of the shear layer formed between the two tributary flows are presented. As the experimental flow cases comprised changes in the flow discharge and channel widths of the tributaries, the influence of width and discharge ratios on the turbulent flow structure and shear layer is also evaluated. Main findings indicate that changes in the difference between momentum ratio in the tributaries have a significant effect on the magnitude and location of flow mechanisms.


Author(s):  
Н.Н. Федорова ◽  
М.А. Гольдфельд

The results of a computational study of turbulent supersonic flows in a channel with a backward-facing step are presented, taking into account crossflow injection of argon and hydrogen jets. The calculations are performed at Mach number M = 4 at the channel entrance under the real flight conditions, which were realized in experiments in a hot-shot aerodynamic facility. The comparison of the flowfields is carried out for jet-to-freestream momentum ratio range J = 1 ÷ 6. It is shown that the degree of mixing, estimated from the uniformity index, increases with J increasing and with an increase in the molecular weight of the injected gas at the same J.


Author(s):  
Shuo Mao ◽  
Ridge A. Sibold ◽  
Stephen Lash ◽  
Wing F. Ng ◽  
Hongzhou Xu ◽  
...  

Abstract Nozzle guide vane platforms often employ complex cooling schemes to mitigate ever-increasing thermal loads on endwall. Understanding the impact of advanced cooling schemes amid the highly complex three-dimensional secondary flow is vital to engine efficiency and durability. This study analyzes and describes the effect of coolant to mainstream blowing ratio, momentum ratio and density ratio for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole jet purge cooling scheme. Nominal flow conditions were engine representative and as follows: Maexit = 0.85, Reexit/Cax = 1.5 × 106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to upper and lower engine extrema at M = 3.5 and 2.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR = 1.2, representing typical experimental neglect of coolant density, and DR = 1.95, representative of typical engine conditions. An optimal coolant momentum ratio between = 6.3 and 10.2 is identified for in-passage film effectiveness and net heat flux reduction, at which the coolant suppresses and overcomes secondary flows but imparts minimal turbulence and remains attached to endwall. Progression beyond this point leads to cooling effectiveness degradation and increased endwall heat flux. Endwall heat transfer does not scale well with one single parameter; increasing with increasing mass flux for the low density case but decreasing with increasing mass flux of high density coolant. From the results gathered, both coolant to mainstream density ratio and blowing ratio should be considered for accurate testing, analysis and prediction of purge jet cooling scheme performance.


Author(s):  
Tian Deng ◽  
Xingming Ren ◽  
Yaxuan Li

Abstract For the low-speed liquid injected into the high-speed strong turbulent gas flow in the same direction, the atomization is a transient-intensive spray, and there are many factors affecting and controlling the atomization. In this paper, the distribution and characteristics of the liquid breakup in the air atomized flow field are analyzed. A stochastic immersed model to simulate the liquid core is developed, in which, the liquid core is regarded as an immersed porous medium with a random structure, and the probability of existence is used to simulate the position of the liquid core. The initial fragmentation mechanism of the air blast atomization is applied as the global variables of the stochastic process. Using the above stochastic immersed model, combined with the Large Eddy Simulation method, the numerical simulation of the downstream flow field of a coaxial jet air atomizing nozzle is carried out. Additional force is added to the momentum equation in the LES model. Instantaneous air velocity at the air-liquid interface is characterized by instantaneous liquid phase velocity at the same time. The size of the initial atomized droplet satisfies a probability distribution, and once the large droplets are formed, the Lagrangian method is used to track the droplets. The comparison between the simulation results and the experimental results shows that this stochastic immersed model can quickly capture the information of length and position of the liquid nucleus. When the gas-liquid momentum ratio M is 3∼10000, the liquid core length can be predicted more accurately. When M>10, the prediction result is much better than phenomenological model. This model is capable of capturing flow field structures such as recirculation zones and large-scale vortices. The results of initial spray angle from experiment expression give slightly better agreement with this model. Increasing the momentum ratio leads to decreasing of the initial spray angle. The particle size of the droplets near the nozzle can be accurately predicted, especially when the gas velocity is large (bigger than 60 m/s), and the average diameter prediction error of the droplets is less than 10%.


2020 ◽  
Vol 410 ◽  
pp. 109342 ◽  
Author(s):  
Davide Zuzio ◽  
Annagrazia Orazzo ◽  
Jean-Luc Estivalèzes ◽  
Isabelle Lagrange

Sign in / Sign up

Export Citation Format

Share Document