scholarly journals Modal analysis of the rotating shell structure based on Absolute Nodal Coordinate Formulation

Author(s):  
J C Yu ◽  
Q T Wang
Author(s):  
Jiang Zhao ◽  
Qiang Tian ◽  
Haiyan Hu

Modal analysis of a rotating thin plate is made in this paper through the use of the thin plate elements described by the absolute nodal coordinate formulation (ANCF). The analytical expressions of elastic forces and their Jacobian matrices of the thin plate elements are derived and expressed in a computationally efficient way. The static analysis of a cantilever thin plate and the modal analysis of a square thin plate with completely free boundaries are made to validate the derived formulations. The modal analysis of a rotating cantilever thin plate based on the ANCF is studied. The effect of rotating angular velocity on the natural frequencies is investigated. The eigenvalue loci veering and crossing phenomena along with the corresponding modeshape variations are observed and carefully discussed. Finally, the effects of dimensional parameters on the dimensionless natural frequencies of the thin plate are studied.


1999 ◽  
Vol 122 (4) ◽  
pp. 498-507 ◽  
Author(s):  
Marcello Campanelli ◽  
Marcello Berzeri ◽  
Ahmed A. Shabana

Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]


2021 ◽  
Author(s):  
K. Zhou ◽  
H.R. Yi ◽  
Huliang Dai ◽  
H Yan ◽  
Z.L. Guo ◽  
...  

Abstract By adopting the absolute nodal coordinate formulation, a novel and general nonlinear theoretical model, which can be applied to solve the dynamics of combined straight-curved fluid-conveying pipes with arbitrary initially configurations and any boundary conditions, is developed in the current study. Based on this established model, the nonlinear behaviors of the cantilevered L-shaped pipe conveying fluid with and without base excitations are systematically investigated. Before starting the research, the developed theoretical model is verified by performing three validation examples. Then, with the aid of this model, the static deformations, linear stability, and nonlinear self-excited vibrations of the L-shaped pipe without the base excitation are determined. It is found that the cantilevered L-shaped pipe suffers from the static deformations when the flow velocity is subcritical, and will undergo the limit-cycle motions as the flow velocity exceeds the critical value. Subsequently, the nonlinear forced vibrations of the pipe with a base excitation are explored. It is indicated that the period-n, quasi-periodic and chaotic responses can be detected for the L-shaped pipe, which has a strong relationship with the flow velocity, excitation amplitude and frequency.


2021 ◽  
Vol 55 (5) ◽  
pp. 179-195
Author(s):  
Luu Quang Hung ◽  
Zhuang Kang ◽  
Li Shaojie

Abstract In this paper, the dynamics of the flexible riser are investigated based on the absolute nodal coordinate formulation (ANCF). The stiffness, generalized elastic force, external load, and mass matrixes of the element are deduced based on the principle of energy conversion and assembled with the finite element method. The motion equation of the flexible riser is established. The influence of the environmental load conditions on the flexible riser model is studied in the MATLAB environment. Moreover, the accuracy and reliability of the programs are verified for a beam model with theoretical solutions. Finally, the static and dynamic characteristics of the flexible riser are analyzed, systematically adopting the ANCF method, which in turn proves the effectiveness and feasibility of the ANCF. Therefore, the proposed method is a powerful scheme for investigating the dynamics of flexible structures with large deformation in ocean engineering.


Author(s):  
Marcello Berzeri ◽  
Marcello Campanelli ◽  
A. A. Shabana

Abstract The equivalence of the elastic forces of finite element formulations used in flexible multibody dynamics is the focus of this investigation. Two conceptually different finite element formulations that lead to exact modeling of the rigid body dynamics will be used. These are the floating frame of reference formulation and the absolute nodal coordinate formulation. It is demonstrated in this study that different element coordinate systems, which are used for the convenience of describing the element deformations in the absolute nodal coordinate formulation, lead to similar results as the element size is reduced. The equivalence of the elastic forces in the absolute nodal coordinate and the floating frame of reference formulations is shown. The result of this analysis clearly demonstrates that the instability observed in high speed rotor analytical models due to the neglect of the geometric centrifugal stiffening is not a problem inherent to a particular finite element formulation but only depends on the beam model that is used. Fourier analysis of the solutions obtained in this investigation also sheds new light on the fundamental problem of the choice of the deformable body coordinate system in the floating frame of reference formulation. A new method is presented and used to obtain a simple expression for the elastic forces in the absolute nodal coordinate formulation. This method, which employs a nonlinear elastic strain-displacement relationship, does not result in an unstable solution when the angular velocity is increased.


Author(s):  
R. Y. Yakoub ◽  
A. A. Shabana

Abstract By utilizing the fact that the absolute nodal coordinate formulation leads to a constant mass matrix, a Cholesky decomposition of the mass matrix can be used to obtain a constant velocity transformation matrix. This velocity transformation can be used to express the absolute nodal coordinates in terms of the generalized Cholesky coordinates. In this case, the inertia matrix associated with the Cholesky coordinates is the identity matrix, and therefore, an optimum sparse matrix structure can be obtained for the augmented multibody equations of motions. The implementation of a computer procedure based on the absolute nodal coordinate formulation and Cholesky coordinates is discussed in this paper. A flexible four-bar linkage is presented in this paper in order to demonstrate the use of Cholesky coordinates in the simulation of the small and large deformations in flexible multibody applications. The results obtained from the absolute nodal coordinate formulation are compared to those obtained from the floating frame of reference formulation.


Sign in / Sign up

Export Citation Format

Share Document