scholarly journals Energy consumption, thermal comfort and load match: study of a monitored nearly Zero Energy Building in Mediterranean climate

Author(s):  
Silvia Erba ◽  
Lorenzo Pagliano ◽  
Saeid Charani Shandiz ◽  
Marco Pietrobon
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsen Mahdavi Adeli ◽  
Said Farahat ◽  
Faramarz Sarhaddi

Residential and commercial buildings consume approximately 60% of the world’s electricity. It is almost impossible to provide a general definition of thermal comfort, because the feeling of thermal comfort is affected by varying preferences and specific traits of the population living in different climate zones. Considering that no studies have been conducted on thermal satisfaction of net-zero energy buildings prior to this date, one of the objectives of the present study is to draw a comparison between the thermal parameters for evaluation of thermal comfort of a net-zero energy building occupants. In so doing, the given building for this study is first optimized for the target parameters of thermal comfort and energy consumption, and, hence, a net-zero energy building is formed. Subsequent to obtaining the acceptable thermal comfort range, the computational analyses required to determine the temperature for thermal comfort are carried out using the Computational Fluid Dynamics (CFD) model. The findings of this study demonstrate that to reach net-zero energy buildings, solar energy alone is not able to supply the energy consumption of buildings and other types of energy should also be used. Furthermore, it is observed that optimum thermal comfort is achieved in moderate seasons.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Xiaolong Xu ◽  
Guohui Feng ◽  
Dandan Chi ◽  
Ming Liu ◽  
Baoyue Dou

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m2·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7591
Author(s):  
Wojciech Cieslik ◽  
Filip Szwajca ◽  
Jedrzej Zawartowski ◽  
Katarzyna Pietrzak ◽  
Slawomir Rosolski ◽  
...  

The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.


2020 ◽  
pp. 1420326X2096115
Author(s):  
Jaime Resende ◽  
Marta Monzón-Chavarrías ◽  
Helena Corvacho

Buildings account for 34% of world energy consumption and about half of electricity consumption. The nearly/Net Zero Energy Building (nZEB/NZEB) concepts are regarded as solutions for minimizing this problem. The countries of Southern Europe, which included the nZEB concept recently in their regulatory requirements, have both heating and cooling needs, which adds complexity to the problem. Brazil may benefit from their experience since most of the Brazilian climate zones present significant similarities to the Southern European climate. Brazil recently presented a household energy consumption increase, and a growing trend in the use of air conditioning is predicted for the coming decades. Simulations with various wall and roof solutions following the Brazilian Performance Standard were carried out in a low standard single-family house in three different climate zones in order to evaluate thermal comfort conditions and energy needs. Results show that in milder climate zones, achieving thermal comfort with a low energy consumption is possible, and there is a great potential to achieve a net zero-energy balance. In the extreme hot climate zone, a high cooling energy consumption is needed to provide thermal comfort, and the implementation of a nearly zero-energy balance may be more feasible.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 5
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Dorota Anna Krawczyk ◽  
Violeta Medelienė

The European Commission has set the target in the Energy Efficiency Directive (EED) to reduce EU primary energy consumption in 2020 by 20%. A crucial aspect of the overall assessment of energy saving measures that affect electricity demand is the primary energy factor that is used for evaluation of primary energy consumption from renewable energy resources in a Nearly Zero Energy Building (nZEB). The analysis of the resources has revealed that energy from photovoltaics is evaluated using different methods. Therefore, this article’s aim is to investigate and evaluate the primary energy factor of energy from photovoltaics using the data of produced and consumed energy of 30 photovoltaic (PV) systems operating in Lithuania. Investigation results show that the difference of non-renewable primary energy factor between the PV systems due to capacities is 35%. In addition, the results of the studies show that the average value of the primary energy factor of PV systems in Lithuania is 1.038.


Sign in / Sign up

Export Citation Format

Share Document