The applicability of nearly/net zero energy residential buildings in Brazil – A study of a low standard dwelling in three different Brazilian climate zones

2020 ◽  
pp. 1420326X2096115
Author(s):  
Jaime Resende ◽  
Marta Monzón-Chavarrías ◽  
Helena Corvacho

Buildings account for 34% of world energy consumption and about half of electricity consumption. The nearly/Net Zero Energy Building (nZEB/NZEB) concepts are regarded as solutions for minimizing this problem. The countries of Southern Europe, which included the nZEB concept recently in their regulatory requirements, have both heating and cooling needs, which adds complexity to the problem. Brazil may benefit from their experience since most of the Brazilian climate zones present significant similarities to the Southern European climate. Brazil recently presented a household energy consumption increase, and a growing trend in the use of air conditioning is predicted for the coming decades. Simulations with various wall and roof solutions following the Brazilian Performance Standard were carried out in a low standard single-family house in three different climate zones in order to evaluate thermal comfort conditions and energy needs. Results show that in milder climate zones, achieving thermal comfort with a low energy consumption is possible, and there is a great potential to achieve a net zero-energy balance. In the extreme hot climate zone, a high cooling energy consumption is needed to provide thermal comfort, and the implementation of a nearly zero-energy balance may be more feasible.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsen Mahdavi Adeli ◽  
Said Farahat ◽  
Faramarz Sarhaddi

Residential and commercial buildings consume approximately 60% of the world’s electricity. It is almost impossible to provide a general definition of thermal comfort, because the feeling of thermal comfort is affected by varying preferences and specific traits of the population living in different climate zones. Considering that no studies have been conducted on thermal satisfaction of net-zero energy buildings prior to this date, one of the objectives of the present study is to draw a comparison between the thermal parameters for evaluation of thermal comfort of a net-zero energy building occupants. In so doing, the given building for this study is first optimized for the target parameters of thermal comfort and energy consumption, and, hence, a net-zero energy building is formed. Subsequent to obtaining the acceptable thermal comfort range, the computational analyses required to determine the temperature for thermal comfort are carried out using the Computational Fluid Dynamics (CFD) model. The findings of this study demonstrate that to reach net-zero energy buildings, solar energy alone is not able to supply the energy consumption of buildings and other types of energy should also be used. Furthermore, it is observed that optimum thermal comfort is achieved in moderate seasons.


2020 ◽  
Vol 4 (1) ◽  
pp. 73
Author(s):  
Asep Yudi Permana ◽  
Karto Wijaya ◽  
Hafiz Nurrahman ◽  
Aathira Farah Salsabilla Permana

Abstract: Energy efficiency is a top priority in design, because design errors that result in wasteful energy will impact operational costs as long as the building operates. The opening protection in the facade should be adjusted according to their needs, for optimum use of sky light. Inhibiting the entry of solar heat into the room through the process of radiation, conduction or convection, optimum use of sky light and efforts to use building skin elements for shading are very wise efforts for energy savings. House construction planning must be careful and consider many things, including: physical potential. Physical potential is a consideration of building materials, geological conditions and local climate. Related to the issue of global warming that occurs in modern times, climate is a major consideration that needs to be resolved.The purpose of building design, especially in residential homes aims to create amenities for its inhabitants. Amenities are achieved through physical comfort, be it spatial comfort, thermal comfort, auditory comfort, or visual comfort.Energy waste is also caused by building designs that are not well integrated and even wrong and are not responsive to aspects of function, and climate. This is worsened by the tendency of the designers to prioritize aesthetic aspects (prevailing trends). The issue of green concepts and energy consumption efficiency through the Net Zero-Energy Buildings (NZE-Bs) program from the housing sector as a response to tackling global warming is already familiar in Indonesia, although its application has not yet been found significantly. Green concepts offered by housing developers are often merely marketing tricks and are not realized and grow the responsibility of the residents to look after them. Due to the lack of understanding of the green concept, housing developers tend to offer more a beautiful and green housing environment, not the actual green concept.Keyword: Socio-culture, Energy efficiency, Energy consumption, Environment. The green conceptAbstrak: Efisiensi energi merupakan prioritas utama dalam disain, karena kesalahan disain yang berakibat boros energi akan berdampak terhadap biaya opersional sepanjang bangunan tersebut beroperasi. Pelindung bukaan pada fasade sebaiknya dapat diatur sesuai kebutuhannya, untuk pemanfaatan terang langit seoptimal mungkin. Penghambatan masuknya panas matahari kedalam ruangan baik melalui proses radiasi, konduksi atau konveksi, pemanfaatan terang langit seoptimal mungkin serta upaya pemanfaatan elemen kulit bangunan untuk pembayangan merupakan upaya yang sangat bijaksana bagi penghematan energi. Perencanaan pembangunan rumah harus cermat dan mempertimbangkan banyak hal, antara lain: potensi fisik. Potensi fisik adalah pertimbangan akan bahan bangunan, kondisi geologis dan iklim setempat. Terkait dengan isu pemanasan global yang terjadi pada masa modern ini, iklim menjadi sebuah pertimbangan utama yang perlu diselesaikan.Tujuan desain bangunan khususnya pada rumah tinggal bertujuan menciptakan amenities bagi penghuninya. Amenities dicapai melalui kenyamanan fisik, baik itu spatial comfort, thermal comfort, auditory comfort, maupun visual comfort.Pemborosan energi juga disebabkan oleh desain bangunan yang tidak terintegrasi dengan baik bahkan salah dan tidak tanggap terhadap aspek fungsi, serta iklim. Hal tersebut diperparah yang kecenderungan para perancang lebih mementingkan aspek estetis (tren yang berlaku). Isu konsep hijau dan efisiensi konsumsi energi melalui program Net Zero-Energy Buildings (NZE-Bs) dari sektor perumahan sebagai respon untuk menanggulangi pemanasan global sudah tidak asing di Indonesia, walaupun penerapannya masih belum dapat ditemukan secara signifikan. Konsep hijau yang ditawarkan oleh pengembang perumahan seringkali hanya sebagai trik pemasaran belaka dan tidak diwujudkan serta ditumbuhkan tanggung jawab para penghuni untuk menjaganya. Akibat minimnya pemahaman mengenai konsep hijau tersebut, para pengembang perumahan cenderung lebih banyak menawarkan lingkungan perumahan yang asri dan hijau, bukan konsep hijau yang sebenarnya.Kata Kunci: Sosio-kultur, Efisiensi Energi, Konsumsi energi, Lingkungan, Konsep Hijau


2018 ◽  
Vol 11 (3) ◽  
pp. 45 ◽  
Author(s):  
Ahmed A. Alyahya ◽  
Nawari O. Nawari

Global climate change is serving as warning signs it gradually begins to capture the attention of people at large. Many actions have been and continue to be taken by governments and organizations to preserve the planet, which is impactful and needed. But conservation efforts are not exclusive to governments and large institutions- individuals can contribute in multiple ways that will have ripple effects, one being the choice to build sustainable, net-zero energy homes. Building a house that is a net-zero energy requires many strategies.One of the most compelling factors in reducing the home energy consumption, to then achieve a net-zero energy home especially in hot-dry regions, is the optimization of the building envelope performance. This paper discussed several building envelope design strategies that are suitable for homes in hot-dry regions and tested them.The Methods including analyzing case study from Qater by using computer and were analyzed using Building Information Modeling (BIM) tools for energy simulation programs. All those strategies were applied to a design proposal for a house in Riyadh, Saudi Arabia, which is a hot-dry region. Further, the same simulation analyses were projected onto an identical house to the design proposal, but with a traditional, low-efficient building envelope.The results showed that the house with the high-efficient building envelope had 48% less energy consumption than the one that has the low-efficiency envelope.This research demonstrated the efficacy of the building envelope to reduce the energy consumption of single-family homes in hot-dry regions. The study outlines vital strategies for a high-efficient building envelope design in hot-dry areas that reaching net-zero energy homes and thus help to offset the negative impact of climate changes in arid areas.


Author(s):  
Lohit Saini ◽  
Chandan Swaroop Meena ◽  
Binju P Raj ◽  
Nehul Agarwal ◽  
Ashok Kumar

Author(s):  
Sepehr Foroushani

Controlling air leakage through the building envelope remains a challenge, especially in light of the imperative to transition to a net-zero energy building sector and the increasing importance of indoor air quality during extreme weather events such as wildfires. The British Columbia Energy Step Code is a performance-based compliance option in the British Columbia Building Code which is intended to provide a transition pathway to net-zero energy ready construction by 2032. For small residential buildings, performance targets entail thresholds for the measured air leakage rate through the building envelope. This paper reports on the airtightness of the first 145 single- and two-family dwellings built under the Energy Step Code in Richmond, BC. Although the first phase of the implementation of the Energy Step Code in Richmond entailed no airtightness targets (only testing), results indicate improvement compared to the historical levels of airtightness in the region.


2020 ◽  
Vol 12 (19) ◽  
pp. 7961 ◽  
Author(s):  
Shady Attia

Climate responsive design can amplify the positive environmental effects necessary for human habitation and constructively engage and reduce the energy use of existing buildings. This paper aims to assess the role of the thermal adaptation design strategy on thermal comfort perception, occupant behavior, and building energy use in twelve high-performance Belgian households. Thermal adaptation involves thermal zoning and behavioral adaptation to achieve thermal comfort and reduce energy use in homes. Based on quantitative and qualitative fieldwork and in-depth interviews conducted in Brussels, the paper provides insights on the impact of using mechanical systems in twelve newly renovated nearly- and net-zero energy households. The article calls for embracing thermal adaptation as a crucial design principle in future energy efficiency standards and codes. Results confirm the rebound effect in nearly zero energy buildings and the limitation of the current building energy efficiency standards. The paper offers a fresh perspective to the field of building energy efficiency that will appeal to researchers and architects, as well as policymakers.


2019 ◽  
Vol 111 ◽  
pp. 04004
Author(s):  
Jiale Chai ◽  
Pei Huang ◽  
Yongjun Sun

Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy and environmental problems. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from the historical weather data. Consequently, the designed NZEBs using the historical weather data may not achieve the desired performance in their lifecycles. Therefore, this study investigates the climate change impacts on NZEB’s energy balance in different climate regions, and also evaluates different measures’ effectiveness in mitigating the associated impacts of climate change. In the study, the multi-year future weather data in different climate regions are firstly generated using the morphing method. Then, using the generated future weather data, the energy balance of the NZEBs, designed using the TMY data, are assessed. Next, to mitigate the climate change impacts, different measures are adopted and their effectiveness is evaluated. The study results can improve the understanding of climate change impacts on NZEB’s energy balance in different climate regions. They can also help select proper measures to mitigate the climate change impacts in the associated climate regions.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Frederick Paige ◽  
Philip Agee ◽  
Farrokh Jazizadeh

AbstractThe behaviors of building occupants have continued to perplex scholars for years in our attempts to develop models for energy efficient housing. Building simulations, project delivery approaches, policies, and more have fell short of their optimistic goals due to the complexity of human behavior. As a part of a multiphase longitudinal affordable housing study, this dataset represents energy and occupant behavior attributes for 6 affordable housing units over nine months in Virginia, USA which are not performing to the net-zero energy standard they were designed for. This dataset provides researchers the ability to analyze the following variables: energy performance, occupant behaviors, energy literacy, and ecological perceptions. Energy data is provided at a 1 Hz sampling rate for four circuits: main, hot water heater, dryer, and HVAC. Building specifications, occupancy, weather data, and neighboring building energy use data are provided to add depth to the dataset. This dataset can be used to update building energy use models, predictive maintenance, policy frameworks, construction risk models, economic models, and more.


Sign in / Sign up

Export Citation Format

Share Document