scholarly journals Influences of Yield Strength and Section Depth to the Compression Capacity of Single Cold-Formed Channel Lipped

Author(s):  
Tan Boon-Kai ◽  
Shek Poi-Ngian ◽  
Ahmad Kueh-Beng-Hong
2019 ◽  
Author(s):  
Chelsey Henry ◽  
Keith Rupel ◽  
Charles Park ◽  
Joseph Costanzo ◽  
Cary Kaczowka ◽  
...  

2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2020 ◽  
Vol 86 (5) ◽  
pp. 43-51
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
P. V. Volkov ◽  
D. A. Zhgut

The history of appearance and the current state of instrumented indentation are briefly described. It is noted that the materials instrumented indentation methods using a pyramid and ball indenters are actively developing and are currently regulated by several Russian and international standards. These standards provide formulas for calculating the Young’s modulus and hardness at maximum indentation load. Instrumented indentation diagrams «load F – displacement α» of a ball indenter for metallic materials were investigated. The special points on the instrumented indentation diagrams «F – α» loading curves in the area of elastic into elastoplastic deformation transition, and in the area of stable elastoplastic deformation are revealed. A loading curve area with the load above which the dF/dα begins to decrease is analyzed. A technique is proposed for converting «F – α» diagrams to «unrestored Brinell hardness HBt – relative unrestored indent depth t/R» diagrams. The elastic and elastoplastic areas of «HBt – t/R» diagrams are described by equations obtained analytically and experimentally. The materials strain hardening parameters during ball indentation in the area of elastoplastic and plastic deformation are proposed. The similarity of «HBt – t/R» indentation diagram with the «stress σ – strain δ» tensile diagrams containing common zones and points is shown. Methods have been developed for determining hardness at the elastic limit, hardness at the yield strength, and hardness at the ultimate strength by instrumented indentation with the equations for their calculation. Experiments on structural materials with different mechanical properties were carried out by instrumented indentation. The values of hardness at the elastic limit, hardness at the yield strength and hardness at the ultimate strength are determined. It is concluded that the correlations between the elastic limit and hardness at the elastic limit, yield strength and hardness at the yield strength, ultimate tensile strength and hardness at the ultimate strength is more justified, since the listed mechanical characteristics are determined by the common special points of indentation diagrams and tensile tests diagrams.


Alloy Digest ◽  
2007 ◽  
Vol 56 (2) ◽  

Abstract Durimphy is a maraging steel with 1724 MPa (250 ksi) tensile strength and a very high yield strength due to precipitation hardening. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: FE-140. Producer or source: Metalimphy Precision Alloys.


Alloy Digest ◽  
2011 ◽  
Vol 60 (10) ◽  

Abstract Dogal 300 LAD, 340 LAD, 380 LAD, 420 LAD, 460 LAD and 500 LAD are high-strength low alloyed steels intended for pressing. The designation in the name is the guaranteed minimum yield strength. Dogal steels can be zinc coated. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on surface qualities as well as forming, heat treating, joining, and surface treatment. Filing Code: CS-167. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
1967 ◽  
Vol 16 (6) ◽  

Abstract Magnesium MSR-B is a heat-treatable magnesium alloy with highest yield strength of any cast magnesium alloy up to 480 F. It is pressure tight and weldable by argon-arc. It is recommended for aircraft nose wheels, missile components, transmission cases, etc. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Mg-63. Producer or source: Magnesium Elektron Ltd.


Alloy Digest ◽  
1962 ◽  
Vol 11 (7) ◽  

Abstract Magnesium MSR-A is a heat-treatable magnesium alloy with highest yield strength of any cast magnesium alloy up to 480 F. It is pressure tight and weldable by argon-arc. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and joining. Filing Code: Mg-52. Producer or source: J. Stone & Company Ltd.


Alloy Digest ◽  
2016 ◽  
Vol 65 (4) ◽  

Abstract Vallourec VM 85 13Cr (minimum yield strength 85 ksi, or 586 MPa) is a low alloy carbon steel for use in oil country tubular goods as a material suitable for sour service. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming. Filing Code: CS-198. Producer or source: Vallourec USA Corporation.


Sign in / Sign up

Export Citation Format

Share Document