scholarly journals Flexural properties of hybrid synthetic/Napier fibres reinforced epoxy composites

Author(s):  
M J M Ridzuan ◽  
M S Abdul Majid ◽  
A Khasri ◽  
L Tajul ◽  
E M Cheng
2019 ◽  
Vol 8 (1) ◽  
pp. 484-492 ◽  
Author(s):  
Yinqiu Wu ◽  
Bolin Tang ◽  
Kun Liu ◽  
Xiaoling Zeng ◽  
Jingjing Lu ◽  
...  

Abstract The reinforcing effect of graphene oxide (GO) in enhancing the flexural strength and flexural modulus of aramid fiber (AF)/epoxy composites were investigated with GO-AFs at a weight fraction of 0.1-0.7%. The flexural strength and flexural modulus of the composite reached 87.16 MPa and 1054.7 MPa, respectively, which were about 21.19% and 40.86% higher than those of the pure epoxy resin, respectively. In addition, the flexural properties and interfacial shear strength (IFSS) of composite reinforced by GO-AFs were much higher than the composites reinforced by AFs due to GO improved the interfacial bonding between the reinforcement material and matrix.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2021 ◽  
pp. 096739112110132
Author(s):  
A Bayat ◽  
M Damircheli ◽  
M Esmkhani

In present research, the flexural properties of glass/epoxy composites reinforced by nanoclay particles (3, 5 and 7 wt.%) under various hybrid thermal cycling and shock loadings (15 and 30 thermal cycles at immediate −70°C and +100°C temperatures) have been investigated. It was found that the flexural strength of 5 wt.% nanoclay/glass/epoxy nanocomposites under 15 and 30 hybrid thermal loadings was enhanced by 19.35% and 20.78%, respectively. Also, after 15 hybrid thermal loadings, the flexural stiffness of 5 wt.% clay/glass/epoxy nanocomposites increased by 9.30% compared to static conditions. More importantly, after 30 hybrid thermal loadings, by adding more filler contents, the flexural stiffness was increased. For instance, at 7 wt.% clay/glass/epoxy nanocomposites, the flexural stiffness enhanced 17.97% compared to neat composite. FESEM morphology images confirmed that presence of optimum filler contents changed the composites inherent properties. Therefore, the outcome of this research can show various remarkable advantages for researchers to apply nanoclay as nanofillers to reinforce composites structures under hybrid thermal cycling and shock applications.


2020 ◽  
Vol 17 (1) ◽  
pp. 141-155
Author(s):  
Jasem G. Alotaibi ◽  
Ayedh Eid Alajmi ◽  
Belal F. Yousif ◽  
Nbhan D. Salih

2018 ◽  
Vol 759 ◽  
pp. 9-14
Author(s):  
Marko Hyvärinen ◽  
Timo Kärki

Due to the increasing concern about the environment and depleting conventional materials, a lot of research is going on in the field of material science to develop environment friendly materials, and to improve the recycling and reusing of waste materials. Composites are material providing possibilities to reach these targets. In this experimental study, the possibilities and potential in the utilization of mixed waste from recycling in the manufacturing of epoxy composites are studied. The studied properties are flexural properties, i.e. flexural strength and flexural modulus, and hardness as mechanical properties, and water absorption and thickness swelling as physical properties. Element analysis was used to determine the composition of construction and demolition waste used in manufacturing. The analysis revealed a large proportion of mineral elements with high hardness. Consequently, this had a clear impact on the hardness of the composite. The flexural properties were found to be on a reasonable level. The waste-epoxy composite showed a low uptake of water due to the minor content of hydrophilic materials present in the composite.


1992 ◽  
Vol 11 (23) ◽  
pp. 1599-1601 ◽  
Author(s):  
C. C. Lee ◽  
G. Freischmidt ◽  
R. S. P. Coutts ◽  
A. G. Crosky ◽  
S. Bandyopadhyay

2012 ◽  
Vol 46 (22) ◽  
pp. 2879-2890 ◽  
Author(s):  
H Ku ◽  
M Donald ◽  
F Cardona ◽  
M Trada

Sign in / Sign up

Export Citation Format

Share Document