scholarly journals Providing of Ultra-Thin Film Thickness Uniformity by Magnetron Sputtering from Two Sources

Author(s):  
S Hydyrova ◽  
M Yu Akishin ◽  
D D Vasilev ◽  
K M Moiseev
2021 ◽  
Author(s):  
Daesuk Kim ◽  
Gukhyeon Hwang ◽  
Gukhyeon Hwang ◽  
Sukhyun Choi ◽  
Vamara Dembele ◽  
...  

2014 ◽  
Vol 979 ◽  
pp. 248-250 ◽  
Author(s):  
Thanat Srichaiyaperk ◽  
Kamon Aiempanakit ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
...  

Tungsten trioxide (WO3) thin films were prepared by a DC reactive magnetron sputtering technique. The thin film fabrication process used tungsten (99.995%) as the sputtering target, the mixture of argon and oxygen as sputtering and reactive gases, and silicon (100) and glass slides as the substrates. The effects of annealing temperature in the range of 200-400°C on physical and optical properties of the WO3 thin films were investigated. The nanostructures and morphologies of these films were characterized by grazing-incident X-ray diffraction (GIXRD) and field-emission scanning electron microscopy (FE-SEM). The optical properties were analyzed by variable-angle spectroscopic ellipsometry (VASE) and spectrophotometer. From the XRD results, the as-deposited and annealed WO3 thin films up to 300°C were all amorphous. Only the WO3 thin film annealed at 400°C exhibited a polycrystalline monoclinic phase. The FE-SEM cross-sections and surface topologies demonstrated nearly identical thin-film thickness and physical grain sizes. The SE analyses showed that the thin films were all homogeneous dense layers with additional surface roughness. With the annealing treatment, the thin film thickness was slightly decreased. The SE physical model was best optimized with the Cauchy optical model. The results showed that the refractive index at 550 nm was increased from 2.17 to 2.23 with the increased annealing temperature. The results from the spectrophotometer confirmed that the optical spectra for the WO3 thin films were decreased. This study demonstrated that, the thin film annealed at 400°C exhibited the slightly lower transparency, which corresponded to the results from the GIXRD and SE analyses.


2014 ◽  
Vol 915-916 ◽  
pp. 803-807
Author(s):  
Jiang Wei Fan ◽  
Qin Lei Sun ◽  
Mei Quan Liu

Different optical models were adopted to fit theoretical simulation curves of a SiO2 ultra-thin film with a density of 2.2 g/cm3 and a thickness of 6nm grown on Si wafer. The results indicate that thickness obtained from fitting decrease linearly with increase of film density. An improved optical model (density of thin film of 2.4g/cm3, roughness of surface of 0.4nm, roughness of surface of 0.3nm) was obtained according to the above analysis and the GIXRR results of our previous work. The improved model could give more accurate thickness value of ultrathin film with thickness less than 10nm. It was employed in the thickness fitting for thermal oxidized SiO2/Si thin film with nominal thicknesses of 2, 4, 6, 8 and 10nm. The results were 2.61, 4.07, 6.02, 7.41 and 9.43nm, decreased by 13.8%10.3%8.1%7.3% and 6.6%, respectively, compared with the results calculated from the traditional model.


Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 506-514
Author(s):  
Meiyu He ◽  
Jiayue Han ◽  
Xingwei Han ◽  
Jun Gou ◽  
Ming Yang ◽  
...  

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document