Effects of Annealing Treatment on WO3 Thin Films Prepared by DC Reactive Magnetron Sputtering

2014 ◽  
Vol 979 ◽  
pp. 248-250 ◽  
Author(s):  
Thanat Srichaiyaperk ◽  
Kamon Aiempanakit ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
...  

Tungsten trioxide (WO3) thin films were prepared by a DC reactive magnetron sputtering technique. The thin film fabrication process used tungsten (99.995%) as the sputtering target, the mixture of argon and oxygen as sputtering and reactive gases, and silicon (100) and glass slides as the substrates. The effects of annealing temperature in the range of 200-400°C on physical and optical properties of the WO3 thin films were investigated. The nanostructures and morphologies of these films were characterized by grazing-incident X-ray diffraction (GIXRD) and field-emission scanning electron microscopy (FE-SEM). The optical properties were analyzed by variable-angle spectroscopic ellipsometry (VASE) and spectrophotometer. From the XRD results, the as-deposited and annealed WO3 thin films up to 300°C were all amorphous. Only the WO3 thin film annealed at 400°C exhibited a polycrystalline monoclinic phase. The FE-SEM cross-sections and surface topologies demonstrated nearly identical thin-film thickness and physical grain sizes. The SE analyses showed that the thin films were all homogeneous dense layers with additional surface roughness. With the annealing treatment, the thin film thickness was slightly decreased. The SE physical model was best optimized with the Cauchy optical model. The results showed that the refractive index at 550 nm was increased from 2.17 to 2.23 with the increased annealing temperature. The results from the spectrophotometer confirmed that the optical spectra for the WO3 thin films were decreased. This study demonstrated that, the thin film annealed at 400°C exhibited the slightly lower transparency, which corresponded to the results from the GIXRD and SE analyses.

2013 ◽  
Vol 770 ◽  
pp. 197-200
Author(s):  
T. Rattana ◽  
N. Witit-Anun ◽  
S. Suwanboon ◽  
S. Chaiyakun

Polycrystalline TiN thin films were deposited on silicon and quartz substrates by DC reactive magnetron sputtering technique. The as-prepared thin films were annealed in air at various temperatures ranging between 400 °C to 700 °C. The effect of annealing temperatures on the microstructural and optical properties have been investigated by field emission scanning electron microscope, Raman scattering spectroscopy and UVVis spectrophotometer, respectively. The raman results indicated the presence of the rutile TiO2 phase for the samples annealed above 500°C. Many hollow-spherical structures appeared on the surface of films annealed at about 600 °C and the hollow-spherical structures occurred increasingly as a function of annealing temperatures. In addition, the optical properties of thin films depended strongly on annealing temperature.


Optik ◽  
2019 ◽  
Vol 199 ◽  
pp. 163517 ◽  
Author(s):  
Mahsa Etminan ◽  
Nooshin. S. Hosseini ◽  
Narges Ajamgard ◽  
Ataalah Koohian ◽  
Mehdi Ranjbar

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 859 ◽  
Author(s):  
Wei-Kai Wang ◽  
Kuo-Feng Liu ◽  
Pi-Chuen Tsai ◽  
Yi-Jie Xu ◽  
Shih-Yung Huang

Zinc gallate (ZnGa2O4) thin films were grown on sapphire (0001) substrate using radio frequency (RF) magnetron sputtering. After the thin film deposition process, the grown ZnGa2O4 was annealed at a temperature ranging from 500 to 900 °C at atmospheric conditions. The average crystallite size of the grown ZnGa2O4 thin films increased from 11.94 to 27.05 nm as the annealing temperature rose from 500 to 900 °C. Excess Ga released from ZnGa2O4 during thermal annealing treatment resulted in the appearance of a Ga2O3 phase. High-resolution transmission electron microscope image analysis revealed that the preferential crystallographic orientation of the well-arranged, quasi-single-crystalline ZnGa2O4 (111) plane lattice fringes were formed after the thermal annealing process. The effect of crystallite sizes and lattice strain on the width of the X-ray diffraction peak of the annealed ZnGa2O4 thin films were investigated using Williamson-Hall analysis. The results indicate that the crystalline quality of the deposited ZnGa2O4 thin film improved at higher annealing temperatures.


2006 ◽  
Vol 297 (2) ◽  
pp. 411-418 ◽  
Author(s):  
F.F. Yang ◽  
L. Fang ◽  
S.F. Zhang ◽  
K.J. Liao ◽  
G.B. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document