scholarly journals Precise control of Jeff=12 magnetic properties in Sr2IrO4 epitaxial thin films by variation of strain and thin film thickness

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  
Optik ◽  
2019 ◽  
Vol 199 ◽  
pp. 163517 ◽  
Author(s):  
Mahsa Etminan ◽  
Nooshin. S. Hosseini ◽  
Narges Ajamgard ◽  
Ataalah Koohian ◽  
Mehdi Ranjbar

2015 ◽  
Vol 3 (21) ◽  
pp. 5598-5602 ◽  
Author(s):  
Ruyi Zhang ◽  
Ming Liu ◽  
Lu Lu ◽  
Shao-Bo Mi ◽  
Hong Wang

Interface engineering by controlling the film thickness is an effective method to tune/control the magnetic properties of epitaxial LiFe5O8 thin films fabricated by a high-pressure sputtering system.


Author(s):  
A.E. Shupenev ◽  
N.S. Pankova ◽  
I.S. Korshunov ◽  
A.G. Grigoriyants

The thickness of thin films determines the films’ unique properties, due to which they are widely used in optics and electronics. To measure the thickness of films in the range of 1 nm — 1 mcm during film deposition or on a finished product, it is important that non-destructive measurement methods should be used. An analysis of the most commonly used non-destructive methods for measuring and controlling the thickness of thin films is performed, with a possibility of in situ control of the technological process as well as for testing of finished products. This work describes theoretical and practical considerations of using reflection high-energy electron diffraction, piezoelectricity, interferometry and gravimetric methods for thin film thickness measurements. The results of the study can be used for selecting an optimal method of obtaining thin films when conducting theoretical and applied research.


2014 ◽  
Vol 979 ◽  
pp. 248-250 ◽  
Author(s):  
Thanat Srichaiyaperk ◽  
Kamon Aiempanakit ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
...  

Tungsten trioxide (WO3) thin films were prepared by a DC reactive magnetron sputtering technique. The thin film fabrication process used tungsten (99.995%) as the sputtering target, the mixture of argon and oxygen as sputtering and reactive gases, and silicon (100) and glass slides as the substrates. The effects of annealing temperature in the range of 200-400°C on physical and optical properties of the WO3 thin films were investigated. The nanostructures and morphologies of these films were characterized by grazing-incident X-ray diffraction (GIXRD) and field-emission scanning electron microscopy (FE-SEM). The optical properties were analyzed by variable-angle spectroscopic ellipsometry (VASE) and spectrophotometer. From the XRD results, the as-deposited and annealed WO3 thin films up to 300°C were all amorphous. Only the WO3 thin film annealed at 400°C exhibited a polycrystalline monoclinic phase. The FE-SEM cross-sections and surface topologies demonstrated nearly identical thin-film thickness and physical grain sizes. The SE analyses showed that the thin films were all homogeneous dense layers with additional surface roughness. With the annealing treatment, the thin film thickness was slightly decreased. The SE physical model was best optimized with the Cauchy optical model. The results showed that the refractive index at 550 nm was increased from 2.17 to 2.23 with the increased annealing temperature. The results from the spectrophotometer confirmed that the optical spectra for the WO3 thin films were decreased. This study demonstrated that, the thin film annealed at 400°C exhibited the slightly lower transparency, which corresponded to the results from the GIXRD and SE analyses.


2014 ◽  
Vol 979 ◽  
pp. 244-247 ◽  
Author(s):  
Chanunthorn Chananonnawathorn ◽  
Narathon Khemasiri ◽  
Thanat Srichaiyaperk ◽  
Benjarong Samransuksamer ◽  
Mati Horprathum ◽  
...  

Tantalum oxide (Ta2O5) thin films were prepared, at different deposition time, by a DC reactive magnetron sputtering. During the deposition, a high-quality tantalum target was sputtered under argon and oxygen ambience on to silicon (100) and glass substrates. The prepared thin films were systematically characterized for both physical and optical properties based on spectroscopic ellipsometry (SE), and consequently confirmed by several methods. With the SE physical models, we could determine the thin film thickness as well as their inhomogeneity. The films thickness results were directly confirmed by field-emission scanning electron microscopy (FE-SEM) used to observe cross-sections, and surface profiler used to measure the physical thickness of the films. With the SE optical models, we applied both the Cauchy and Tauc-Lorentz dispersions in order to obtain the optical constants, to be directly compared with those from the Swanepoel method (SM). Our result showed that from the SE analyses, the SE physical model was obtained as the multi-layer configurations. The obtained Ta2O5 thin film thickness was closely related with the measured result from the FE-SEM cross-sectional micrographs and the surface profiler. For the optical characteristic, the double layer physical model was best optimized with the Tauc Lorentz dispersion model for the most accurate results. In comparison, the SM technique also demonstrated a capability to determine both the film thickness and its refractive index only from some samples. Therefore, this study proved that the SE technique successfully and accurately determine both the physical and optical properties of the Ta2O5 thin films.


2015 ◽  
Vol 1109 ◽  
pp. 401-404
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
M.F. Malik ◽  
A. Ishak ◽  
Mohamad Rusop

The nanoStructured ZnO thin films were prepared by Spin coating technique on glass substrates at various layers. The structural and optical properties were characterized by field emission scanning electron microscopy (FESEM) and UV-Vis-NIR respectively. The surface morphology reveals that the nanostructured ZnO thin films become densely packed as the thickness increased. The average particles size of ZnO thin film estimated from FESEM images at different layers of 1, 3, 5, 7, 9 were 20nm, 28nm, 36nm, 39nm and 56nm, respectively. The surface roughness of thin films was increase as the thin film thickness increases. The results show all films are transparent in the visible region (400-800 nm) with average transmittance above 85 %. Meanwhile, the optical band gap was decrease as the film thickness increases. The conductivity of ZnO thin film slightly improved as the thickness increased as measured through two probes 1-V measurement system.


2019 ◽  
Vol 54 (1) ◽  
pp. 67-70 ◽  
Author(s):  
E. Ortiz ◽  
L. Martínez-Gómez ◽  
J.F. Valdés-Galicia ◽  
R. García ◽  
M. Anzorena ◽  
...  

In this work, we evaluated the efficiency of cerium oxide as sunscreen using titanium oxide as standard comparison material. Geant4 software was used to perform numerical simulation, we calculated the radiation dose that ultraviolet radiation deposits in a skin sample as a function of thin film thickness of the sunscreens. We found that in the interval between 5 and 15 nm of the thin film thickness and for wavelengths between 160 and 400 nm, cerium oxide has the potential to reduce the radiation dose more than 10% with respect to the same thickness band of titanium oxide. Using thin films of cerium oxide and titanium oxide with same thicknesses and greater than 45 nm, the difference in the attenuation of the radiation dose for both materials is less than 1%. The results lead us to propose cerium oxide as an alternative material to titanium oxide for the manufacture of sunscreens.


Sign in / Sign up

Export Citation Format

Share Document